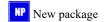
About us.

SibEnzyme Ltd. (Siberian Enzyme, SE),

is a privately owned Russian company founded in 1991. SibEnzyme Ltd. is located in Academtown near Novosibirsk city – the capital of Siberia and a geographic center of Russia.

SibEnzyme's primary focus is production of enzymes and related products for molecular biology, PCR and genetic engineering. SE product line includes more than 200 enzymes, a set of perfect DNA ladders, high quality enzymatic dNTPs and DNA preparations.

SibEnzyme Ltd. is one of the leading companies in research, development and production of restriction endonucleases and new DNA endonucleases.


A new type of methyl-directed DNA endonucleases has been discovered and characterized in our laboratories.

These new enzymes are a good instrument to detect DNA methylation status in epigenetics studies and medical applications.

Information about SibEnzyme products may be found at www.sibenzyme.com

Scientific publications with detailed study of new enzymes are available at www.science.sibenzyme.com

Contents

Restriction Endonucleases	3
Nickases	51
Methyl-directed DNA endonucleases	52
DNA – Methyltransferases	59
Polymerases	60
DNA Modifying Enzymes	64
DNA Ladders	67
Plasmid and Phage DNAs	71
Human Genomic DNA	72
dNTPs(enzymatic)	73
dNTPs(chemical)	75
Substrates	77
Kits	78
Buffers composition	80
SE Buffer Activity Chart for Restriction Enzymes	82
Isoschizomers	
Alphabetized List of SE Recognition Sequences	88

Restriction Endonucleases

Restriction endonucleases are bacterial site-specific DNA-endonucleases that recognize and cleave with high specificity short (usually 4-8 base pairs) sequences in double stranded DNA. Type II restriction endonucleases cut both strands of substrate DNA in the presence of Mg²⁺ ions near or within the recognition sequence.

SibEnzyme Ltd. is one of the leading companies in research, development and production of restriction endonucleases. At present SibEnzyme Ltd. has **more then 200 commercially available restriction endonucleases** in the product list including many unique enzymes. 56 of these enzymes have been cloned and are purified from recombinant sources.

To simplify the reaction of DNA hydrolysis with restriction endonucleases and to set up **double digestion** reaction, a special reaction universal **Buffer "ROSE"** was designed. Over 150 enzymes reveal high activity in this buffer. The information about activity of restriction endonucleases in "ROSE" buffer is available in section "Info/SE-buffers activity".

Fast digestion of different types of DNA (mainly plasmid DNA) may be performed with **Turbo qualified Restriction Enzymes** (marked with symbol **T**, ex:E003T/E004T). Currently **25** Turbo SE restriction enzymes are commercially available. They may be used for a short time (10-15 min) DNA digestion as well as in a standard reaction. The reaction with most of these enzymes may be performed using optimal or universal ("**ROSE**") Buffer (both are supplied with Turbo enzymes).

Furthermore, to allow the performance of a limited number of reactions (up to 50) with minimum expenses, SE 20 most commonly used restriction endonucleases are now supplied in lesser quantities (marked with a symbol "m", ex: E003m). The symbol indicates that these enzymes are available in **minimal** packages at optimal prices.

Restriction Endonucleases: Quality Controls

Unit Determination

One unit of restriction endonuclease is defined as the amount of enzyme required to digest 1 μg of substrate DNA in a total reaction volume of 50 μl in 1 hour using the optimal SE-Buffer provided.

Quality Controls

The results of all quality control assays are reported on the Certificate of analysis provided with each enzyme.

Ligation of DNA fragments

DNA fragments are produced by an excessive over-digestion of substrate DNA with each restriction endonuclease. These fragments are then ligated with T4 DNA Ligase at a 5' termini concentration of $0.1\text{-}1.0~\mu\text{M}$. The ligated fragments are then recut with the same restriction endonuclease. Ligation can only occur if the 3' and 5' termini are left intact, and only those molecules with a perfectly restored recognition site can be recleaved. A normal banding pattern after cleavage indicates that both the 3' and 5' termini are intact and the enzyme preparation is free of detectable exonucleases and phosphatases. An example of FbII ligation is presented in the figure.

16-hour assay for nuclease contamination

All SibEnzyme restriction endonucleases are incubated for 16 hours in optimal buffer with $1 \mu g$ of substrate DNA in a volume of $50 \mu l$. The characteristic DNA fragments pattern produced by the enzyme in 1 hour is compared to the pattern produced from an excess of enzyme incubated for 16 hours. A sharp, unaltered pattern under these conditions is an indication that the enzyme preparation is free of detectable levels of nonspecific DNAses. The maximum number of units which can be incubated for 16 hours is indicated.

Assay for exonuclease and phosphatase contamination

All restriction endonucleases are incubated for 3 hours with 5'-[³²P]-labeled synthetic oligonucleotides (single-stranded and double-stranded) in a volume of 20 µl. After incubation of these labeled oligonucleotides with an enzyme, denatured reaction products are separated on a polyacrylamide gel and then analysed by phospho-imaging. No detectable degradation of single-stranded and double-stranded oligonucleotides indicates that the enzyme preparation is free of exonuclease and phosphatase contamination.

Turbo qualified Restriction Endonucleases

Turbo qualified Restriction Endonucleases may be used for 10-15 minutes DNA digestion as well as in a standard reaction. The reaction with the most of these enzymes may be performed using optimal or universal ("ROSE") Buffer (both are supplied with Turbo enzymes).

No	Turbo Prototype Sequence	Cat.No		gestion ti asmid, m		Recommen		
	enzyme		1			10	15	ded buffer
1	Acc65I	Acc65I, KpnI	G↑GTACC	E003T/ E004T		+	+	ROSE
2	AhlI	SpeI	A↑CTAGT	E173T/ E174T		+	+	ROSE
3	AluI	AluI	AG↑CT	E015T/ E016T		+	+	ROSE
4	ApaI	ApaI	GGGCC↑C	E019T/ E020T		+	+	ROSE
5	AsiGI	AgeI	A↑CCGGT	E235T/ E236T		+	+	ROSE
6	BamHI	BamHI	G↑GATCC	E021T/ E022T	+	+	+	ROSE
7	BglII	BglII	A↑GATCT	E027T/ E028T		+	+	ROSE
8	Bsa29I	ClaI	AT↑CGAT	E205T/ E206T	+	+	+	ROSE
9	Bsp19I	NcoI	C↑CATGG	E047T/ E048T	+	+	+	ROSE
10	CciNI	NotI	GC↑GGCCGC	E203T/ E204T			+	ROSE
11	EcoRI	EcoRI	G↑AATTC	E057T/ E058T	+	+	+	ROSE
12	EcoRV	EcoRV	GAT†ATC	E059T/ E060T	+	+	+	ROSE
13	FauNDI	NdeI	CA↑TATG	E009T/ E010T	+	+	+	ROSE
14	HindIII	HindIII	A↑AGCTT	E073T/ E074T	+	+	+	ROSE
15	HinfI	HinfI	G↑ANTC	E075T/ E076T	+	+	+	ROSE
16	HpaI	HpaI	GTT↑AAC	E077T/ E078T		+	+	ROSE
17	MluI	MluI	A↑CGCGT	E085T/ E086T		+	+	ROSE
18	PceI	StuI	AGG↑CCT	E105T/ E106T		+	+	ROSE
19	Psp124BI	SacI	GAGCT↑C	E107T/ E108T	+	+	+	ROSE
20	PstI	PstI	CTGCA↑G	E109T/ E110T	+	+	+	ROSE
21	SalI	SalI	G↑TCGAC	E115T/ E116T		+	+	О
22	Sfr274I	XhoI	C↑TCGAG	E125T/ E126T		+	+	ROSE
23	SmaI	SmaI	CCC↑GGG	E177T/ E178T		+	+	ROSE
24	SphI	SphI	GCATG↑C	E129T/ E130T		+	+	ROSE
25	XbaI	XbaI	T↑CTAGA	E141T/ E142T	+	+	+	ROSE

Minimal packages at optimal price.

No	Cat. No	Enzyme	Qty u/pack.	Price EUR/ 1 pack
1	E021m	BamHI	500	2
2	E057m	EcoR I	500	2
3	E059m	EcoR V	500	2
4	E067m	Hae III	500	2
5	E073m	Hind III	500	2
6	E201m	Hind II	250	2
7	E075m	Hinf I	500	2
8	E161m	Hpa II	250	2
9	E109m	Pst I	500	2
10	E125m	Sfr274 I	500	2
No	Cat. No	Enzyme	Qty u/pack.	Price EUR/ 1 pack
11	E003m	Acc65 I	500	5
12	E019m	Apa I	500	5
13	E027m	Bgl II	500	5
14	E009m	FauND I	500	5
15	E077m	Hpa I	250	5
16	E069m	HspA I	500	5
17	E107m	Psp124B I	500	5
18	E177m	Sma I	500	5
19	E139m	Vsp I	500	5
20	E141m	Xba I	500	5

Aat II (prototype Aat II) GACGT^C E287 500 u.a. Isolated from an E.coli strain that carries the C^TGCAG E288 2500 u.a. cloned Aat II gene from Acetobacter aceti Storage buffer:10 mM Tris-HCl (pH 7.5); 50 Ligation/recutting assay: After 10-fold Concentration: 10 000 units/ml Assaved on λ DNA mM NaCl; 0,1 mM EDTA; overdigestion with Aat II, about 90% of **Reagents Supplied with Enzyme:** 200 µg/ml BSA; 1 mM DTT; and the DNA fragments can be ligated and 10×SE Buffer Y 50% glycerol. Store at -20°C. recut. Overdigestion assay: No nonspecific Diluent: SE Buffer A Reaction conditions: 1×SE Buffer Y activity was detected after incubation of Heat inactivation: Incubate at 37°C. 1 μ g of λ DNA with 10 units of Aat II Yes (65° C for 20 minutes) for 16 hours. Star activity: High enzyme concentration may result in star activity. SE Buffers B G O Activity in SE Buffers (% of max 25-50 10-25 CC^TCGAGG E535 Abs I (prototype Abs I) 50 u.a. GGAGCT^CC E536 250 u.a. Isolated from Arthrobacter species 7M06 Storage buffer:10 mM Tris-HCl (pH 7.5); 50 Concentration: 500 - 1 000 units/ml mM KCl; 0,1 mM EDTA;

Assayed on pUC19SE/DriI digest Reagents Supplied with Enzyme:

10×SE Buffer AbsI

Reaction conditions: 1× SE Buffer AbsI

Incubate at 37°C.

200 2-mercaptoethanol; μg/ml BSA;0.05% Triton X-100 and 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 2-fold overdigestion with Abs I, ~90% of the DNA fragments can be ligated with T4 DNA Ligase and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of DNA with 2 units of Abs I for 16 hours.

Star activity: A long incubation time may result in star activity.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	10-25	0	50-75	0-10

E001

E002

E289

E290

for 16 hours.

E004

TGC^GCA

ACG^CGT

Acc16 I (prototype Mst I) Isolated from Acinetobacter calcoaceticus 16

Concentration: 5 000-10 000 units/ml Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W

Reaction conditions: 1× SE Buffer W

Incubate at 37°C.

Storage buffer:10 mM Tris-HCl (pH 7.5); 200 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA; and 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Activity in SE Buffers (% of max)

SE Buffers

Yes (65° C for 20 minutes) В

ACCTGC(N)₄^

Ligation/recutting assay: After 5-fold overdigestion with Acc16 I, ~90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of Acc16 I for 16 hours

200 u.a.

100 u.a.

500 u.a.

1000 u.a.

G O W Y 75-100 25-50 100 75-100

Acc36 I (prototype BspM I) Isolated from Acinetobacter calcoaceticus 36

Concentration: 2000-5000 units/ml Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1× SE Buffer Y

Incubate at 37°C.

TGGACG(N)8^ Storage buffer:10 mM Tris-HCl (pH 7.5); 100 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 100 μg/ml BSA; and 50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 3-fold overdigestion with Acc36I, 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 3 units of Acc36 I

Star activity: High enzyme

concentration may result in star activity.

5000 u.a.

n I)		G^GTACC	E003	10	000 u.a.	
	Activity in SE Buffers (% of max)	25-50	25-50	50-75	50-75	100
	SE Buffers	В	G	О	W	Y

CCATG^G

10-25

Acc65 I (prototype Kpn I) Isolated from Acinetobacter calcoaceticus 65

Concentration: 10 000 - 30 000 units/ml Assayed on λ DNA (dcm⁻) **Reagents Supplied with Enzyme:**

10×SE Buffer W

Reaction conditions: 1× SE Buffer W

Incubate at 37°C.

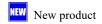
Blocked by overlapping *dcm*-methylation

(C^mCWGG): GGTACCWGG Acc65I is a neoschizomer of KpnI.

Storage buffer:10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA; and 50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:


Activity in SE Buffers (% of max)

SE Buffers

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Acc65 I, >90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of Acc65 I for 16 hours

G 0W Y 25-50 75-100 100 10-25

G^GYRCC E163 500 u.a. AccB1 I (prototype HgiC I) CCRYG^G E164 2500 u.a. Isolated from Acinetobacter calcoaceticus B1 Storage buffer:10 mM Tris-HCl (pH 7.5); 50 Concentration: 5 000 -10 000 units/ml Ligation/recutting assay: After 10-fold mM KCl; 0,1 mM EDTA; overdigestion with AccB1 I, 95% of the Assaved on λ DNA 7 mM 2-mercaptoethanol; 200 µg/ml BSA; **Reagents Supplied with Enzyme:** DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific 50% glycerol. Store at -20°C. 10×SE Buffer K, BSA Diluent: SE Buffer A activity was detected after incubation of Reaction conditions: 1× SE Buffer K +BSA 1 μg of λ DNA with 10 units of AccB1 I **Heat inactivation:** Incubate at 37°C. Yes (65° C for 20 minutes) for 16 hours. To obtain 100% activity, BSA should be Star activity: High enzyme added to the 1×reaction mix to a final concentration may result in star activity. concentration of 100 µg/ml. Do not use BSA for long incubation. SE Buffers B G 0 W Activity in SE Buffers (% of max) 50-75 10-25 10-25 75-100 50-75 CCANNNN^NTGG E179 200 u.a. AccB7 I (prototype PfIM I) **GGTN^NNNNACC** 1000 u.a. E180 Isolated from Acinetobacter calcoaceticus B7 Concentration: 5 000 units/ml Storage buffer:10 mM Tris-HCl (pH 7.5); 50 Ligation/recutting assay: After 5-fold overdigestion with AccB7 I, 95% of the Assaved on λ DNA (dcm-) mM KCl; 0,1 mM EDTA; Reagents supplied with Enzyme: 7 mM 2-mercaptoethanol; 200 µg/ml BSA, DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific 10×SE Buffer G 50% glycerol. Store at -20°C. activity was detected after incubation of Diluent: SE Buffer A Reaction conditions: 1× SE Buffer G **Heat inactivation:** 1 μ g of λ DNA with 5 units of AccB7 I Incubate at 37°C. Yes (65° C for 20 minutes) for 16 hours. **Blocked** by overlapping dcm-methylation activity: Star High enzyme (C^mCWGG): **CCANNNCCTGG** concentration may result in star activity. **CCAGGNNNTGG** SE Buffers В W G O 10-25 Activity in SE Buffers (% of max) 100 25-50 50-75 50-75 1000 u.a. AccBS I (prototype BsrB I) **GAG^CGG** E007 CTC^GCC E008 5000 u.a. Isolated from Acinetobacter calcoaceticus BS **Concentration:** 5000 – 20 000 units/ml Storage buffer:10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 5-fold overdigestion with AccBS I, 90% of the 100 mM NaCl; 0.1 mM EDTA; Assayed on: λ DNA Reagents supplied with Enzyme: 7 mM 2-mercaptoethanol; 200 μg/ml BSA; DNA fragments can be ligated. Of these, 10× SE Buffer Y 50% glycerol. Store at -20°C. 50% can be recut. Overdigestion assay: No nonspecific Reaction conditions: 1× SE Buffer Y Diluent: SE Buffer A activity was detected after incubation of **Heat inactivation:** Incubate at 37°C. 1 μg of λ DNA with 10 units of AccBS Yes (65° C for 20 minutes) I for 16 hours SE Buffers G 25-50 Activity in SE Buffers (% of max) 75-100 75-100 25-50 100 200 u.a. AA^CGTT E011 Acl I (prototype Acl I) TTGC^AA E012 1000 u.a. Isolated from Acinetobacter calcoaceticus Concentration: 3 000 - 5 000 units/ml Storage buffer:10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 2-fold Assayed on: λ DNA 100 mM NaCl; 0,1 mM EDTA; overdigestion with Acl I, 90% of the **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 200 µg/ml BSA; DNA fragments can be ligated and recut 0,05% Triton X-100; 50% glycerol. with this enzyme. 10×SE Buffer Y, BSA Overdigestion assay: No nonspecific **Reaction condition:** Store at -20°C. activity was detected after incubation of 1xSE Buffer Y + BSA Diluent: SE Buffer A **Heat inactivation:** 1 μ g of λ DNA with 2 units of Acl I Incubate at 37°C. Blocked by CpG methylation. Yes (65° C for 20 minutes) for 16 hours. Do not use BSA for long incubation. To obtain 100% activity, BSA should be SE Buffers В G added to the 1× reaction mix to a final Activity in SE Buffers (% of max) 0-10 0-10 0-10 0-10 100 concentration of 100 µg/ml. GGATC(N)₄^ E211 100 u.a. AclW I (prototype Bin I) CCTAG(N)5^ E212 500 u.a. Isolated from Acinetobacter calcoaceticus W2131 Storage buffer: 10 mM Tris-HCl (pH 7.5): Ligation/recutting assay: After 2-fold Concentration: 1000 - 3000 units/ml 100 mM KCl; 0,1 mM EDTA; overdigestion with AclW I, about 50% Assaved on λ DNA (dam⁻) of the DNA fragments can be ligated and Reagents Supplied with Enzyme: 7 mM 2-mercaptoethanol;200 μg/ml BSA; 10×SE Buffer Y, BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 37°C.

Blocked by overlapping dam-methylation

(G^mATC): GG^mATC

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final concentration of 100 µg/ml.

and 50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 6 units of AclW I

for 16 hours. Do not use BSA for long incubation.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	75-100	50-75	0-10	0-10	100

Y^GGCCR E499 100 u.a. Aco I (prototype Cfr I) RCCGG^Y E500 500 u.a. Isolated from Acinetobacter calcoaceticus Storage buffer:10 mM Tris-HCl (pH 7.5); Concentration: 500 – 2 000 units/ml Ligation/recutting assay: After 3-fold 200 mM NaCl; 0,1 mM EDTA; overdigestion with Aco I. >90% of λ Assaved on: λ DNA(dam⁻.dcm⁻) **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 100 µg/ml BSA; DNA fragments can be ligated with T4 10×SE Buffer G and 50% glycerol. Store at -20°C. DNA Ligase at 16°C and recut. Reaction condition: 1xSE Buffer G Diluent: SE Buffer A Overdigestion assay: No nonspecific Incubate at 37°C. **Heat inactivation:** activity was detected after incubation of Yes (65° C for 20 minutes) **Blocked** by overlapping dcm-methylation 1 μ g of λ DNA with 2 units of Aco I for 16 hours (C^mCWGG): CCTGGCCR. SE Buffers 0 W B G Activity in SE Buffers (% of max 100 50-75 75-100 R^AATTY E013 500 u.a. ACS I (prototype Apo I) YTTAA^R E014 2500 u.a. Isolated from Arthrobacter citreus Storage buffer:20 mM Tris-HCl (pH 7.5); 50 Concentration: 10 000 - 20 000 units/ml Ligation/recutting assay: After 20-fold mM KCl; 0,1 mM EDTA; Assaved on \(\lambda \) DNA overdigestion with Acs I, >95% of the **Reagents Supplied with Enzyme:** 10 mM 2-mercaptoethanol; 50% glycerol. DNA fragments can be ligated and recut. 10×SE Buffer W, BSA Store at -20°C. Overdigestion assay: No nonspecific Diluent: SE Buffer A Reaction condition: 1xSE Buffer W+BSA activity was detected after incubation of Heat inactivation: 1 μg of λ DNA with $\,$ 50 units of Acs I Incubate at 50°C Yes (80° C for 20 minutes) To obtain 100% activity, BSA should be for 16 hours. Do not use BSA for long incubation. added to the 1× reaction mix to a final SE Buffers В concentration of 100 µg/ml. G 0 W 50-75 Activity in SE Buffers (% of max) 25-50 50-75 100 10-25 Acu I (prototype Eco57 I) CTGAAG(N)16^ 50 u.a. E451 Isolated from an E.coli strain that carries the GACTTC(N)14[^] E452 250 u.a. cloned Acu I gene from Acinetobacter calcoaceticus SRW4 Concentration: 1 000 units/ml Storage buffer:10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 2-fold 100 mM NaCl; 0,1 mM EDTA; 1 mM DTT; Assayed on \(\lambda \) DNA overdigestion with Acu I, about 80% of **Reagents Supplied with Enzyme:** 200 μg/ml BSA; 50% glycerol. Store at -20° the DNA fragments can be ligated. Of these, 80% can be recut. 10×SE BufferY, BSA, SAM Diluent: SE Buffer A Overdigestion assay: No nonspecific **Reaction conditions:** activity was detected after incubation of **Heat inactivation:** 1×SE Buffer Y+BSA+SAM 1 μ g of λ DNA with 2 units of Acu I for Yes (65° C for 20 minutes) Incubate at 37°C. 16 hours. To obtain 100% activity, BSA should be Star activity: High enzyme added to the $1 \times reaction$ mix to a final concentration may result in star activity. concentration of 100 µg/ml, and SAM should Do not use BSA for long incubation. be added to a final concentration 0.01 mM. SE Buffers B W 0 Activity in SE Buffers (% of max) 25-50 50-75 50-75 75-100 75-100 Afe I (prototype Eco47 III) AGC^GCT E213 200 u.a. Isolated from an E.coli strain that carries the TCG^CGA E214 1000 u.a. cloned Afe I gene from Alcaligenes faecalis For high concentration 1000 u.a. E214X Concentration: 10 000 and 50 000 units/ml Storage buffer: 10 mM Tris-HCl (pH 7.6); Ligation/recutting assay: After 10-fold overdigestion with Afe I, > 80% of Assayed on λ DNA (BamHI-digest) 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT; **Reagents Supplied with Enzyme:** pBR322 DNA fragments can be ligated 200 μg/ml BSA; and 50% glycerol. 10×SE Buffer Y Store at -20°C and recut. Diluent: SE Buffer A Overdigestion assay: No nonspecific Reaction conditions: 1×SE Buffer Y activity was detected after incubation of **Heat inactivation:** Incubate at 37°C. 1 μ g of the λ DNA with 40 units of Afe I Yes (65° C for 20 minutes) for 16 hours. SE Buffers B G O Activity in SE Buffers (% of max) 10-25 25-50 75-100 75-100 100 200 u.a. TTS^AA E573

Ags I (prototype Ags I)

Isolated from Agrococcus species 25 Concentration: 5000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y. BSA

Reaction conditions: 1×SE Buffer Y + BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM KCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA;

50% glycerol. Store at -20°C. Diluent: SE Buffer A

Heat inactivation:

Yes (65° C for 20 minutes)


Ligation/recutting assay: After 5-fold overdigestion with AgsI, >90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of $1 \mu g$ of λ DNA with 10 units of Ags I for 16 hours.

1000 u.a.

Do not use BSA for long incubation

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	50-75	10-25	10-25	100

AA^STT

E574

Ahl I (prototype Spe I)

Isolated from Alteromonas haloplanktis SP Concentration: 10 000 - 30 000 units/ml

Assaved on T7 DNA

Reagents Supplied with Enzyme:

10×SE Buffer B, BSA

Reaction conditions: 1×SE Buffer B+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

Storage buffer:10 mM Tris-HCl (pH 7.5); 100 mM KCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

No (65°C,80°C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Ahl I, >90% of T7 DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 µg of T7 DNA with 40 units of Ahl I for 16 hours.

1000 u.a.

5000 u.a.

Do not use BSA for long incubation.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	100	75-100	25-50	25-50	75-100

^CCWGG

GGWCC^

A^CTAGT

TGATC^A

E173

E174

E473

E474

E015

E016

E549

E550

E017

Ain I (prototype EcoR II) Isolated from Acinetobacter johnsonii R2

Concentration: 500 – 3 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 55°C.

Note: At 37°C activity is about 10% from

maximum.

Not blocked by overlapping

dcm-methylation (C^mCWGG): CCWGG

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA;

50% glycerol. Store at -20°C. Diluent: SE Buffer A

Heat inactivation: Yes (65° C for 20 minutes) Ligation/recutting assay: After 3-fold overdigestion with AjnI, 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 6 units of Ajn I for 16 hours.

200 u.a.

1000 u.a.

SE Buffers G W Activity in SE Buffers (% of max) 25-50 10-25 10-25 25-50 100

AG^CT

TC^GA

AG^CT

TC^GA

Alu I (prototype Alu I)

Isolated from an E.coli strain that carries the cloned AluI gene from Arthrobacter luteus

Concentration: 2 000 – 5000 units/ml

Assayed on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 37°C.

MGQ

Storage buffer:10 mM Tris-HCl (pH 7.5); 200 mM KCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA;

50% glycerol. Store at -20°C

Activity in SE Buffers (% of max)

Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 3-fold overdigestion with Alu I, >90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 4 units of Alu I for

200 u.a.

1000 u.a.

16 hours. W 75-100 75-100 10-25 50-75

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

SE Buffers

AluB I (prototype Alu I) Isolated from Arthrobacter luteus B

Concentration: 5 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer B, BSA

Reaction conditions: 1×SE Buffer B + BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

Note: AluB I is able to cleave some methylated DNA substrates.

AluB I is an isoschizomer of Alu I

Storage buffer:10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol. Store at -20°C

Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with AluB I, 80% of λ DNA fragments can be ligated with T4 DNA Ligase and can be recut.

200 u.a.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of AluB I for 16 hours.

Do not use BSA for long incubation

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	100	75-100	10-25	10-25	75-100

See: http://science.sibenzyme.com/article8 article 30 1.phtml

Ama87 I (prototype Ava I)

Isolated from Alteromonas macleodii 87 Concentration: 10 000 - 20 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA

Reaction conditions: 1xSE Buffer W+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

C^YCGRG **GRGCY^C**

100 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 50% glycerol. Store

Storage buffer: 10 mM KH₂PO₄ (pH 7.2);

at -20°C. Diluent: SE Buffer A

Heat inactivation:

Yes (65° C for 20 minutes)

5000 u.a. E018 Ligation/recutting assay: After 20-fold

overdigestion with Ama87 I, >90% of the DNA fragments can be ligated and

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Ama87 I for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	10-25	50-75	75-100	100	0-10

See page 52 for more information about this enzyme.

Apa I (prototype Apa I) Isolated from Acetobacter pasteurianus		GGCC^C ^CCGGG	E019 E020		000 u.a. 000 u.a.	
Concentration: 10 000 - 30 000 units/ml Assayed on λ DNA (dcm ⁻ , BamHI-digest) Reagents Supplied with Enzyme: 10×SE Buffer Y, BSA Reaction conditions:1× SE Buffer Y+BSA Incubate at 37°C. Blocked by overlapping dcm-methylation (C ^m CWGG): GGGCCCWGG. To obtain 100% activity, BSA should be	Storage buffer:10 mM Tris-HC 200 mM KCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µ 50% glycerol. Store at -20°C. Diluent: SE Buffer A Heat inactivation: Yes (65° C for	Ligation/recutting assay: After 20-fold overdigestion with Apa I, >90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 40 units of Apa I for 16 hours. Do not use BSA for long incubation.				
added to the $1 \times$ reaction mix to a final concentration of 100 μ g/ml.	SE Buffers	B 50-75	G 25-50	O 0-10	0-10	100
Ars I (prototype Ars I) Isolated from Arthrobacter species NTS	Activity in SE Buffers (% of max) ^(N)8GAC(N)6T ^(N)13CTG(N)6A	TYG(N)11^	E575 E576		50 u.a. 250 u.a.	100
Concentration: 500 units/ml Assayed on T7 DNA Reagents Supplied with Enzyme: 10×SE Buffer Y, BSA Reaction conditions: 1×SE Buffer Y + BSA Incubate at 30°C. To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.	Storage buffer:10 mM KH ₂ PO ₄ (J 200 mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µ 50% glycerol. Store at -20°C Diluent: SE Buffer A Heat inactivation: Yes (65° C for	Ligation/recutting assay: After 3-fold overdigestion with Ars I, about 70% of the DNA fragments can be ligated. Of these, 80% can be recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 µg of DNA with 1 units of Ars I for 16 hours. Do not use BSA for long incubation				
, , ,	SE Buffers Activity in SE Buffers (% of max)	B 0	G 0	O 0	0 0	100
AsiG I (prototype Age I) Isolated from Arthrobacter species G	A	^CCGGT GGCC^A	E235 E236	, ,	100 u.a. 500 u.a.	
Concentration: 3 000 –5000 units/ml Assayed on λ DNA Reagents Supplied with Enzyme: 10×SE Buffer O Reaction condition: 1× SE Buffer O Incubate at 37°C.	Storage buffer:10 mM Tris-HC 250 mM NaCl; 0.1 mM EDTA; 100 µg/ml BSA; 7 mM 2-merc: 50% glycerol. Store at -20°C. Diluent: SE Buffer A Heat inactivation: Yes (65° C for SE Buffers Activity in SE Buffers (% of max)	Ligation/r overdigesti DNA fragr Overdiges activity wa 1 μg of λ for 16 hour	on with Annents can tion assaus detected DNA with	AsiG I, >9 be ligated ny: No n l after incu	0% of the and recut. onspecific abation of	
	Activity in SE Buffers (% of max)	10-25	25-50	100	/5-100	10-25
AspA2 I (prototype Avr II)	MGO C	^CTAGG	E245		500 u.a.	

AspA2 I (prototype Avr II) Isolated from Arthrobacter species A2

Concentration: 10 000 - 20 000 units/ml Assayed on \(\text{DNA (Hind III-digest)} \) **Reagents Supplied with Enzyme:** 10×SE Buffer W, BSA

Reaction conditions: 1× SE Buffer W+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 μg/ml.

Storage buffer:10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA; $100~\mu g/ml~BSA;~7~mM~2$ -mercaptoethanol;

50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

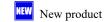
> No (65° C for 20 minutes) Yes (80° C for 20 minutes)

GGATC^C

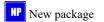
Ligation/recutting assay: After 20-fold overdigestion with AspA2 I,

2500 u.a.

> 90% of the DNA fragments can be ligated and recut.


Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of the DNA with 20 units of AspA2

I for 16 hours.


E246

	Do not use BSA for long incubation.				
SE Buffers	В	G	O	W	Y
Activity in SE Buffers (% of max)	10-25	50-75	75-100	100	75-100

Activity Qualified for human genome studies: http://science.sibenzyme.com/article8_article_31_1.phtml

ASPLE I (prototype Hha I) Isolated from Arthrobacter species LE3860

Concentration: 10 000 - 30 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer O

Reaction conditions: 1× SE Buffer O

Incubate at 37°C.

Blocked by CG methylation 5'-G(5mC)GC-3'/3-CG(5mC)G-5' or 5'-G(5mC)GC-3'/3'-CGCG-5' Not blocked by methylation 5'-GCG(5mC)-3'/3'-(5mC)GCG-5' or 5'-GCG(5mC)-3'/3'-CGCG-5'.

Cut hemimethylated site: 5'- G(5mC)GC-3' / 3'-CGCG-5' Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

100 μg/ml BSA; 7 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with AspLE I,

500 u.a.

2500 u.a.

>90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of AspLE I for 16 hours.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	10-25	75-100	100	50-75	25-50

G^GNCC

50-75

CC^SGG

GGS^CC

GCG^C

C^GCG

E221

E222

E117

AspS9 I (prototype Sau96 I) Isolated from Arthrobacter species S9

Concentration: 10 000 -30 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W

Reaction condition: 1×SE Buffer W

Incubate at 37°C.

Blocked by overlapping *dcm*-methylation

(C^mCWGG): **GGN<u>CCWGG</u>**

MGQ CCNG^G E118 Storage buffer:10 mM Tris-HCl (pH 7.5); 50

mM KCl; 0.1 mM EDTA; 200 µg/ml BSA; 7 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Activity in SE Buffers (% of max)

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with AspS9 I,

1000 u.a.

5000 u.a.

>90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 30 units of AspS9 I for 16 hours.

W 50-75 75-100 100 50-75

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

SE Buffers

AsuC2 I (prototype Cau II) Isolated from Actinobacillus suis CA

Concentration: 20 000 - 50 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1× SE Buffer Y

Incubate at 37°C.

Storage buffer:10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with AsuC2 I, ~20% of the DNA fragments can be ligated. In the presence of 10% PEG ligation is better.

2000 u.a.

10000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 50 units of AsuC2 I

for 16 hours

E231

E232

E257

E258

		101 10 11041				
SE Buffers	В	G	О	W	Y	
Activity in SE Buffers (% of max)	75-50	50-75	10-25	25-50	100	

GGTGA(N)8^

CCACT(N)7[^]

AsuHP I (prototype Hph I) Isolated from Actinobacillus suis HP

Concentration: 2 000 – 5 000 units/ml

Assayed on λ DNA (dam-) **Reagents Supplied with Enzyme:**

10×SE Buffer O

Reaction conditions: 1× SE Buffer O

Incubate at 37°C.

Blocked by overlapping dam-methylation

(G^mATC): GGTGATC.

Enzyme may cleave at N₉/N₈ depending on the sequence between the recognition and cleave sites.

Storage buffer:10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0.1 mM EDTA;

MGQ

7 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A

Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 2-fold overdigestion with AsuHP I, about 30% of the DNA fragments can be ligated and recut.

200 u.a.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of AsuHP I for 16 hours.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	10-25	50-75	100	75-100	25-50

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

ASUNH I (prototype Nhe I)

Isolated from Actinobacillus suis NH

Concentration: 10 000 - 20 000 units/ml Assayed on λ DNA (HindIII-digest)

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction conditions: 1× SE Buffer Y+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

G^CTAGC CGATC^G

Storage buffer:10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 100 μg/ml BSA;

50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

E063 1000 u.a. E064 5000 u.a.

Ligation/recutting assay: After 10-fold overdigestion with AsuNH I,

> 90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of the DNA with 20 units of AsuNHI for 16 hours.

Do not use BSA for long incubation.

SE Buffers B 0 G Activity in SE Buffers (% of max) 75-100 50-75 0 - 100-10 100

BamH I (prototype BamH I) **G^GATCC** E021 4000 u.a. Isolated from an E.coli strain that carries the CCTAG^G E022 20000 u.a. cloned BamHI gene from Bacillus amyloliquefaciens H For high concentration E021X 4000 u.a. E022X 20000 u.a. Storage buffer:10 mM Tris-HCl (pH 7.6); 50 Concentration: 20 000 and 50 000 units/ml Ligation/recutting assay: After 50-fold mM NaCl; 0,1 mM EDTA; Assaved on \(\lambda \) DNA overdigestion with BamH I, > 90% of **Reagents Supplied with Enzyme:** 100 μg/ml BSA, 50% glycerol. the DNA fragments can be ligated and recut. 10×SE Buffer G, BSA Store at -20°C. Diluent: SE Buffer A Overdigestion assay: No nonspecific **Reaction conditions:** 1× SE Buffer G+BSA activity was detected after incubation of **Heat inactivation:** Incubate at 37°C. Yes (65° C for 20 minutes) 1 μg of λ DNA with 40 units of BamH I Not blocked by overlapping for 16 hours. dam-methylation (G^mATC): GGATCC. Star activity: High enzyme To obtain 100% activity, BSA should be concentration may result in star activity. added to the 1× reaction mix to a final Do not use BSA for long incubation. concentration of 100 µg/ml. SE Buffers W В 0 Activity in SE Buffers (% of max) 25-50 100 75-100 75-100 25-50 **Bar I** (prototype Bar I) ^(N)₇GAAG(N)₆TAC(N)₁₂^ E547 100 u.a. $^{(N)_{12}CTTC(N)_6ATG(N)_7}$ E548 500 u.a. Isolated from Bacillus sphaericus Concentration: 500 - 2 000 units/ml Storage buffer:20 mM KH₂PO₄ (pH 7.4); Ligation/recutting assay: After 2-fold overdigestion with Bar I, about 90% of Assaved on T7 DNA 100 mM KCl; 0,1 mM EDTA; **Reagents Supplied with Enzyme:** T7 DNA fragments can be ligated and 7 mM 2-mercaptoethanol;200 µg/ml BSA, 10×SE Buffer 2K 50% glycerol. Store at -20°C. 95% of these can be recut. Overdigestion assay: No nonspecific **Reaction conditions:** 1× SE Buffer 2K Diluent: SE Buffer A activity was detected after incubation of **Heat inactivation:** Incubate at 37°C. 1 μg of T7 DNA with 2 units of Yes (65° C for 20 minutes) Bar I for 16 hours. SE Buffers G 0 Activity in SE Buffers (% of max) 0 0-10 25-50 50-75 10-25 **GWGCW^C** Bbv12 I (prototype HgiA I) E023 200 u.a. C^WCGWG E024 1000 u.a. Isolated from Bacillus brevis 12 Storage buffer:10 mM Tris-HCl (pH 7.5); Concentration: 1 000 -5 000 units/ml Ligation/recutting assay: After 5-fold 100 mM NaCl; 0.1 mM EDTA; Assayed on λ DNA overdigestion with Bbv12 I, 7 mM 2-mercaptoethanol; 200 μg/ml BSA, **Reagents Supplied with Enzyme:** >90% of the DNA fragments can be 10×SE Buffer O 50% glycerol. Store at -20°C. ligated and recut. Diluent: SE Buffer A Overdigestion assay: No nonspecific Reaction conditions: 1× SE Buffer O activity was detected after incubation of Incubate at 37°C. **Heat inactivation:** 1 μg of λ DNA with 5 units of Bbv12 I Yes (80°C for 20 minutes) for 16 hours SE Buffers G Activity in SE Buffers (% of max) 75-100 0 - 1010-24 100 10-25 E025 GCCNNNN^NGGC 500 u.a. **Bgl I** (prototype Bgl I) 2500 u.a. CGGN^NNNNCCG E026 Isolated from Bacillus globigii Concentration: 5 000 - 10 000 units/ml Storage buffer:10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 10-fold 200 mM NaCl; 0.1 mM EDTA; Assaved on \(\lambda \) DNA overdigestion with Bgl I, > 90% of the **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 200 µg/ml BSA; DNA fragments can be ligated and recut. 10 × SE Buffer 2W 50% glycerol. Store at -20°C. Overdigestion assay: No nonspecific **Reaction conditions:** 1 × SE Buffer 2W Diluent: SE Buffer A activity was detected after incubation of **Heat inactivation:** 1 μg of λ DNA with 10 units of Bgl I Incubate at 37°C. Yes (65° C for 20 minutes) for 16 hours. Not blocked by dcm-methylation Star activity: High enzyme (C^mCWGG): GCCWGGNNGGC. concentration may result in star activity. SE Buffers В G 0 W Activity in SE Buffers (% of max) 50-75 50-75 0 - 1075-100 25-50 **BgI II** (prototype Bgl II) A^GATCT E027 1000 u.a. Isolated from an E.coli strain that carries the E028 5000 u.a. TCTAG^A cloned Bgl II gene from Bacillus globigii Concentration: 10 000 units/ml Storage buffer:10mM Tris-HCl(pH 7.5); 50 Ligation/recutting assay: After 10-fold Assayed on λ DNA mM NaCl; 0,1 mM EDTA;1 mM DTT; 200 μ overdigestion with Bgl II, > 90% of the Reagents Supplied with Enzyme: g/ml BSA; 50% glycerol. DNA fragments can be ligated and recut. 10×SE Buffer O Store at -20°C. Overdigestion assay: No nonspecific

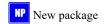
MEIA	New product
MEAN	New product

Reaction conditions: 1× SE Buffer O

dam-methylation (G^mATC): AGATCT.

Not blocked by overlapping

Incubate at 37°C.



Activity in SE Buffers (% of max)

Diluent: SE Buffer A

Heat inactivation:

SE Buffers

for 16 hours

10-25

No (65°C for 20 minutes)

В

0 - 10

activity was detected after incubation of

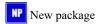
1 μ g of λ DNA with 20 units of Bgl II

O

100

W

25-50


10-25

Bis I (prototype Bis I) G(5mC)^NGC CGN^(5mC)G 40 u.a. E485 Isolated from Bacillus subtilis T30 See page 52 for more information about this enzyme. E486 200 u.a.

Bls I (prototype Bls I) Isolated from Bacillus simplex 23	DNA sequence with at least two 5mC: PuPyN^PuPy PyPu^NPyPu	E533 E534	100 u.a. 500 u.a.	
---	---	--------------	----------------------	--

Concentration: 5 000 – 20 000 units/ml Assayed on λ DNA		CWG^G	E030	5000 u.a.	
Reagents Supplied with Enzyme: 10×SE Buffer O	Storage buffer:10mM Tris-HCl(μ 100 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 100 μg/s 50% glycerol. Store at -20°C.	overdigestio the DNA fr recut.	cutting assay: Aft in with Bme18 I, agments can be li	> 90% of the second sec	
Reaction conditions: 1× SE Buffer O Incubate at 37°C. Cleaved of DNA is impaired by	Diluent: SE Buffer A Heat inactivation: Yes (65° C for 20	minutes)	activity was	on assay: No n detected after inc	ubation
overlapping dcm-methylation (C ^m CWGG):	SE Buffers	В	G	O W	Y
GGW <u>CC</u> WGG.	Activity in SE Buffers (% of max)	10-25	25-50	100 75-100	10-25
Bmt I (prototype Nhe I) Isolated from an E.coli strain that carries the cloned Bmt I gene from Bacillus megaterium S2		TAG^C GATCG	E457 E458	1000 u.a. 5000 u.a.	
Concentration: 20 000 units/ml Assayed on λ DNA (HindIII-digest) Reagents Supplied with Enzyme: 10×SE Buffer W Reaction conditions: 1×SE Buffer W Incubate at 37°C. BmtI is a neoschizomer of NheI.	Storage buffer:10mM Tris-HCl(r 250 mM NaCl; 0,1 mM EDTA; 200 μg/ml BSA; 7 mM 2-mercapt 50% glycerol. Store at -20°C. Diluent: SE Buffer A Heat inactivation: Yes (65° C for 20	overdigestio the DNA fr recut. Overdigesti activity was	cutting assay: After with Bmt I above agments can be listed assay: No not detected after incompany with 20 units.	ut 95% igated and conspecifulation	
	SE Buffers Activity in SE Buffers (% of max)	B 10-25	G 50-75	O W 50-75 100	75-10
Bmu I (prototype Bfi I) (solated from Bacillus megaterium S2	ACTGG		E487 E488	50 u.a. 250 u.a.	/3-10
Concentration: 500 - 1000 units/ml Assayed on λ DNA (HindIII-digest) Reagents Supplied with Enzyme: 10×SE Buffer Y Reaction conditions: 1×SE Buffer Y Incubate at 37°C. Enzyme is active in presence of EDTA.	Storage buffer:10mM Tris-HCl(p 250 mM NaCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 50% glyce Store at -20°C. Diluent: SE Buffer A Heat inactivation: Yes (65° C for 20	erol.	overdigestio the DNA fr 95% of these Overnight recommended containing 1	cutting assay: Af In with Bmu I about the gaments can be listed to the can be recut. digest with Bmu ed. A 50 μl μg of λ DNA and the cubated for 4 hou	ut 75% of the state of the stat
		- F - 1	in the same reaction incu	pattern of DNA babated for 1 hour.	oands as
	SE Buffers	В	G	O W	Y

Bpm I (prototype Gsu I)

Isolated from Bacillus pumilus

Concentration: 200 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA

Reaction conditions: 1×SE Buffer W+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final concentration of 100 µg/ml.

Storage buffer:10mM Tris-HCl(pH 7.5); 50 mM KCl; 0,1 mM EDTA;

10 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

CTGGAG(N)16^

GACCTC(N)14^

Ligation/recutting assay: After 2-fold overdigestion with Bpm I about 95% of the DNA fragments can be ligated and recut.

50 u.a.

250 u.a.

E467

E468

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 0,4 units of Bpm I for 16 hours.

Do not use BSA for long incubation.

				8	
SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	25-50	50-75	75-100	100	50-75

Bpu10 I (prototype Bpu10 I) Isolated from an Escherichia coli strainthat

carries plasmids pBpu10IA and pBpu10IB Concentration: 5 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer K

Reaction conditions: 1×SE Buffer K

Incubate at 37°C.

MGO

CC^TNAGC GGANT^CG

E149 200 u.a. E150 1000 u.a.

Storage buffer:10mM Tris-HCl(pH 7.5); 50 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat Inactivation:**

No (65° C for 20 minutes) Yes (80° C for 20 minutes) Ligation/recutting assay: After 5-fold overdigestion with Bpu10 I, 80% of the DNA fragments can be ligated. Of these. 90% can be recut. In the presence of 10% PEG ligation is better.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of DNA with 5 units of enzyme for 16 hour.

Note: High enzyme concentration may result in star activity or incomplete DNA cleavage. We recommend increasing the incubation time instead of using an excess of Bpu10 I.

SE Buffers В Activity in SE Buffers (% of max) 25-50 50-75 50-75 25-50

TT^CGAA

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

Bpu14 I (prototype Asu II)

Isolated from Bacillus pumilus 14 Concentration: 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer G

Reaction conditions: 1× SE Buffer G

Incubate at 37°C.

AAGC^TT Storage buffer:10mM Tris-HCl(pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Ligation/recutting assay: After 10-fold overdigestion with Bpu14 I, 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Bpu14 I

1000 u.a.

5000 u.a.

for 16 hours.

E205

E206

E033

E034

Yes (65° C for 20 minutes)		for 16 hour	s.		
SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	50-75	100	25-50	25-50	75-100

AT^CGAT

Bsa29 I (prototype Cla I) Isolated from Bacillus stearothermophilus 29

Concentration: 20 000 units/ml Assaved on λ DNA (dam⁻) Reagents Supplied with Enzyme:

10×SE Buffer G, BSA

Reaction conditions: 1×SE Buffer G+BSA

Incubate at 37°C.

Blocked by overlapping dam-methylation

(GmATC): GATCGATC.

Blocked by CG methylation. To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 μg/ml.

TAGC^TA Storage buffer:10mM Tris-HCl(pH 7.5); 250 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol;

200 μg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Bsa29 I,

1000 u.a.

5000 u.a.

> 90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 40 units of Bsa29 I for 16 hour.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	100	50-75	50-75	75-100

Bsc4 I (prototype BsiY I)

Isolated from Bacillus schlegelii 4

Concentration: 10 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA

Reaction conditions: 1×SE Buffer W+BSA

Incubate at 55°C.

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final concentration of 100 µg/ml.

Storage buffer:10mM Tris-HCl(pH 7.5); 50

mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

SE Buffers

DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 30 units of Bsc4 I

Ligation/recutting assay: After 20-fold

overdigestion with Bsc4 I. > 90% of the

500 u.a.

2500 u.a.

for 16 hours.

Yes (80° C for 20 minutes) Do not use BSA for long incubation. G 0 В Activity in SE Buffers (% of max 75-100 50-75 25-50

E039

E040

E038

E219

E220

Bsel I (prototype Bsr I)

Isolated from Bacillus stearothermophilus 1

Concentration: 10 000 – 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1× SE Buffer Y

Incubate at 65°C.

ACTGGN^ TGAC^CN

CCNNNNN^NNGG

GGNN^NNNNNCC

E035 1000 u.a. 5000 u.a. E036 Ligation/recutting assay: After 10-fold

Storage buffer:10mM Tris-HCl(pH 7.5); 100 mM NaCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 100 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

overdigestion with Bse1 I, 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 40 units of Bse1 I for 16 hours.

No (65° C for 20 minutes)

W SE Buffers O В 75-100 Activity in SE Buffers (% of max) 75-100 25-50 10-25 100

Bse118 I (prototype Cfr10 I) Isolated from Bacillus stearothermophilus 118

Concentration: 2 000-5 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer O

Reaction conditions: 1× SE Buffer O

Incubate at 65°C.

R^CCGGY YGGCC^R

Storage buffer: 10 mM KH₂PO₄ (pH 7.5); 100 mM NaCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 100 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Ligation/recutting assay: After 2-fold overdigestion with Bse118 I, 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 2 units of Bse118 I for 16 hours.

200 u.a.

1000 u.a.

No (65° C for 20 minutes)

uoo.	CC^7	ΓNAGG	E037	:	500 u.a.	
Activity in SE Buffers (% of max))	0-10	50-75	100	75-100	25-50
SE Buffers		В	G	О	W	Y

Bse21 I (prototype Sau I) Isolated from Bacillus species 21

Concentration: 10 000 – 30 000 units/ml Assayed on λ DNA (Hind III-digest) **Reagents Supplied with Enzyme:**

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 37°C.

GGANT^CC Storage buffer: 10 mM KH₂PO₄ (pH 7.4); 50 mM KCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 200 μg/ml BSA, 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Activity in SE Buffers (% of max)

MGQ

No (65° C for 20 minutes)

Ligation/recutting assay: After 2-fold overdigestion with Bse21 I, about 50% of the DNA fragments can be ligated (by using of high concentration T4 DNA Ligase and 10% PEG). Of these, >90% can be recut.

2500 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 30 units of Bse21 I for 16 hours

В G 50-75 50-75 10 - 2525-50 100

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

SE Buffers

Bse3D I (prototype BsrD I) Isolated from Bacillus stearothermophilus 3D

Concentration: 5 000 - 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer G

Reaction conditions: 1× SE Buffer G

Incubate at 60°C.

MGQ

GCAATGNN^ CGTTAC^NN

Storage buffer:10mM Tris-HCl(pH 200 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

No (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Bse3D I, > 90% of the DNA fragments can be ligated and recut.

200 u.a.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of Bse3D 1 for 16 hours

E253

E254

	for to flours:						
SE Buffers	В	G	0	W	Y		
Activity in SE Buffers (% of max)	10-25	100	25-50	50-75	75-100		

Oualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

16

GATNN^NNATC E147 1000 u.a. **Bse8** I (prototype BsaB I) CTANN^NNTAG E148 5000 u.a. Isolated from Bacillus species 8 Storage buffer:10mM Tris-HCl(pH 7.5); Concentration: 5 000 units/ml Ligation/recutting assay: After 5-fold 100 mM NaCl; 0,1 mM EDTA; overdigestion with Bse8 I, 80% of the Assaved on λ DNA **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; DNA fragments can be ligated and recut. 100 μg/ml BSA; and 50% glycerol. Overdigestion assay: Long incubation 10×SE Buffer G is not recommended owing to occurrence Store at -20°C. Reaction conditions: 1×SE Buffer G of star activity. Diluent: SE Buffer A Incubate at 60°C. Star activity is observed at a greater **Heat inactivation:** than 5-fold overdigestion of 1 µg No (65° C for 20 minutes) substrate with Bse8 I SE Buffers 75-100 Activity in SE Buffers (% of max) 25-50 100 75-100 50-75 **G^CGCGC** E181 **BseP I** (prototype BseP I) 200 u.a. CGCGC^G E182 1000 u.a. Isolated from Bacillus stearothermophilus P Storage buffer:10mM Tris-HCl(pH 7.5); 50 Ligation/recutting assay: After 5-fold Concentration: 5 000 units/ml overdigestion with BseP I, 90% of the mM KCl; 0,1 mM EDTA; Assayed on λ DNA 10 mM 2-mercaptoethanol; DNA fragments can be ligated and recut. Reagents Supplied with Enzyme: 200 µg/ml BSA; 50% glycerol. Overdigestion assay: No nonspecific 10×SE Buffer G activity was detected after incubation of Reaction conditions: 1× SE Buffer G Store at -20°C. 1 μ g of λ DNA with 10 units of BseP I Diluent: SE Buffer A Incubate at 50°C. **Heat inactivation:** for 16 hours. Blocked by CG methylation. Yes (65° C for 20 minutes) SE Buffers W Activity in SE Buffers (% of max) 50-75 100 75-100 50-75 50-75 BseX3 I (prototype Xma III) C^GGCCG E263 200 u.a. GCCGG^C E264 1000 u.a. Isolated from Bacillus stearothermophilus X3 Ligation/recutting assay: After 5-fold Storage buffer:10mM Tris-HCl(pH 7.5); Concentration: 5 000 units/ml 100 mM NaCl; 0,1 mM EDTA; overdigestion with BseX3 I, Assayed on λ DNA Reagents Supplied with Enzyme: 7 mM 2-mercaptoethanol; > 90% of the DNA fragments can be ligated. Of these, 80% can be recut. 10×SE Buffer O 200 µg/ml BSA; 50% glycerol. Overdigestion assay: No nonspecific Reaction conditions: 1× SE Buffer O

Incubate at 50°C.

Blocked by CG methylation.

Store at -20°C. Diluent: SE Buffer A

Heat inactivation: No (65° C for 20 minutes) SE Buffers

No (65° C for 20	minutes)	for 16 hour	s.	
SE Buffers	В	G	О	W
Activity in SE Buffers (% of max)	10-25	25-50	100	50-75
GGGA	C(N)10^	E479		100 u.a.

CCCTG(N)14^

BSIF I (prototype Fin I) Isolated from Bacillus stearothermophilus FI Concentration: 1 000 units/ml

Assayed on λ DNA Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 37°C.

BslF I also cleaves the sequence

GGGAC(11/15).

To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 μg/ml.

250 mM NaCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C.

Storage buffer:10mM Tris-HCl(pH 7.5);

Diluent: SE Buffer A Heat inactivation:

> No (65° C for 20 minutes) Yes (80° C for 20 minutes)

> > GGTCTC(N)₁^

Ligation/recutting assay: After 3-fold overdigestion with BslFI I, 90% of the DNA fragments can be ligated Of these, 95% can be recut.

500 u.a.

activity was detected after incubation of

1 μg of λ DNA with 10 units of BseX3 I

10-25

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 2 units of BslF I for 16 hours.

Star activity: High enzyme

E480

E285

E286

concentration may result in star activity. Do not use BSA for long incubation.

200 u.a.

1000 u.a.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	25-50	25-50	10-25	25-50	100

Bso31 I (prototype Eco31 I) Isolated from Bacillus stearothermophilus 31

Concentration: 5 000 - 10 000 units/ml

Assayed on T7 DNA

Reagents Supplied with Enzyme:

10×SE Buffer O, BSA

Reaction conditions: 1×SE Buffer O+BSA

Incubate at 55°C.

Not blocked by methylation GGTCTmC. To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 μg/ml.

CCAGAG(N)5^ Storage buffer:10mM Tris-HCl(pH 7.5);

100 mM NaCl; 0,1 mM EDTA;

100 μg/ml BSA;

7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

No (65° C for 20 minu	tes)
------------------------------	------

No	(650	\boldsymbol{C}	for	20	minutes)	١
110	0.5	C	IOI	20	minutes)

No (65° C	for 20	minutes)	
-----------	--------	----------	--

Ligation/recutting assay: After 5-fold
overdigestion with Bso31 I, 90% of the
DNA fragments can be ligated. Of these,
80% can be recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of T7 DNA with 5 units of Bso31 I for 16 hours.

Do not use BSA for long incubation

		Do not use	Donie	iong meac	ation.
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	75-100	100	75-100	25-50

Bsp13 I (prototype BspM II)

Isolated from Bacillus species 13

Concentration: 10 000 – 20 000 units/ml

Assaved on λ DNA (dam⁻) **Reagents Supplied with Enzyme:**

10×SE Buffer 2K

Reaction conditions: 1× SE Buffer 2K

Incubate at 50°C.

Blocked by overlapping dam-methylation

TCCGGATC and GATCCGGA.

AGGCC^T Storage buffer:10mM Tris-HCl(pH 7.5);

T^CCGGA

200 mM KCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol;

200 µg/ml BSA; 50% glycerol.

Activity in SE Buffers (% of max)

Store at -20°C Diluent: SE Buffer A Heat inactivation:

SE Buffers

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Bsp13 I. > 90% of the DNA fragments can be ligated and recut.

1000 u.a.

5000 u.a.

E183

E184

E185

E186

E048

E502

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Bsp13 I

for 16 hours. G 0 W 50-75 75-100 50-75 0-10

Bsp1720 I (prototype Esp I) Isolated from Bacillus species 1720

Concentration: 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer G

Reaction mixture: 1× SE Buffer G

Incubate at 37°C.

GC^TNAGC CGANT^CG Storage buffer:10mM Tris-HCl(pH 7.5);

250 mM NaCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

No (65° C for 20 minutes)

GGTAC^C

Ligation/recutting assay: After 10-fold overdigestion with Bsp1720I, about 80% of the DNA fragments can be ligated. Of these, 95 % can be recut.

500 u.a.

2500 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 10 units of Bsp1720 I for 16 hours

0

SE Buffers B Activity in SE Buffers (% of max) 50-75 75-100 C^CATGG E047 1000 u.a. Bsp19 I (prototype Nco I)

Isolated from Bacillus species 19

Concentration: 10 000 – 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer 2W, BSA **Reaction conditions:** 1×SE Buffer 2W+BSA Incubate at 37°C.

Bsp19I cuts hemimethylated site 5'-(5mC)CATGG-3'/3'-GGTACC-5' and doesn't cut methylated sites 5'-(5mC)CATGG-3'/3'-GGTAC(5mC)-5' and 5'-(4mC)CATGG-3'/3'-GGTAC(4mC)-5'.

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final

Storage buffer:10mM Tris-HCl(pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Bsp19 I, > 90% of the DNA fragments can be ligated and

5000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Bsp19 I for 16 hours.

Do not use BSA for long incubation.

SE Buffers W В Activity in SE Buffers (% of max) 0-10 10-25 50-75 75-100 10-25 concentration of 100 µg/ml. C^CGC E501 200 u.a.

BSPAC I (prototype Aci I) Isolated from Bacillus species AC

Concentration: 2 000 - 5 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer O, BSA

Reaction conditions: 1×SE Buffer O+BSA

Incubate at 37°C.

Blocked by CG methylation.

Note: BspACI has a non-palindromic

recognition site.

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final concentration of 100 μg/ml.

Storage buffer: 10 mM KH₂PO₄ (pH 7.2); 100 mM NaCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol;

200 μg/ml BSA; 50% glycerol. Store at -20°C. Diluent: SE Buffer A Heat inactivation:

MGQ

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with BspAC I, > 95% of λ DNA fragments can be ligated with T4 DNA Ligase at 16°C and 50% of these can be recut.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of $1~\mu g~$ of $\lambda~DNA$ with 10~units~of~BspACI at 37°C for 16 hours.

500 u.a.

2500 u.a.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	10-25	25-50	100	75-100	10-25

GGC^G

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8_article_28_1.phtml

BspFN I (prototype FnuD II) CG^CG E557 GC^GC E558 Isolated from Bacillus species FN

Concentration: 5 000 units/ml Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions:1×SE Buffer Y

Incubate at 37°C.

Blocked by CG methylation.

Storage buffer: 20 mM Tris-HCl (pH 7.5); 300 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 $\mu g/ml$ BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

$> 95\%$ of λ DNA fragments can be
ligated with T4 DNA Ligase and recut
Overdigestion assay: No nonspecific
activity was detected after incubation of
1 CA DNIA 21 10 2 CD ENI

overdigestion with BspFN I,

fic of 1 μg of λ DNA with 10 units of BspFN

Ligation/recutting assay: After 5-fold

Lat 37°C for 16 hours

165 (65 6 161 26	mmates	rats, er	or ro nour	J.	
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	75-100	75-100	50-75	100

BSSEC I (prototype Sec I)

Isolated from $Bacillus\ stear other mophilus\ EC$

Concentration: 10 000 units/ml Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 60°C.

Storage buffer:10mM Tris-HCl(pH 7.5); 50 mM KCl; 0,1 mM EDTA;

200 µg/ml BSA;

MGQ

7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Ligation/recutting assay: After 10-fold overdigestion with BssECI 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of BssEC I for 16 hours.

200 u.a.

1000 u.a.

No (65° C for 20 minutes)

C^CNNGG

GGNNC^C

E273

E274

E261

E262

E207

E208

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	50-75	50-75	50-75	75-100	100

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

BSSNA I (prototype Sna I) Isolated from Bacillus stearothermophilus NA

Concentration: 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA Reaction conditions: 1× SE Buffer W+BSA Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final concentration of 100 μg/ml.

GTA^TAC CAT^ATG

Storage buffer:10mM Tris-HCl(pH 7.5); 100 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 100 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

No (65° C, 80° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with BssNA I,

1000 u.a.

5000 u.a.

> 90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of BssNA I for 16 hours

Star activity: High enzyme concentration results in star activity. Do not use BSA for long incubation.

		_ 00 0			
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	50-75	75-100	100	75-100

BSST1 I (prototype Sty I)

Isolated from Bacillus stearothermophilus T1

Concentration: 20 000 units/ml Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer 2K

Reaction conditions: 1× SE Buffer 2K

Incubate at 60°C.

C^CWWGG GGWWC^C

Storage buffer:10mM Tris-HCl(pH 7.5); 50 mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol;

200 μg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (80° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with BssT1 I,

1000 u.a.

5000 u.a.

> 90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 40 units of BssT1 I for 16 hours.

Star activity: High enzyme concentration results in star activity.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	10-25	25-50	25-50	75-100	10-25

Bst2B I (prototype Bsi I) Isolated from Bacillus stearothermophilus 2B

Concentration: 5 000 - 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 60°C.

To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 µg/ml.

C^TCGTG GAGCA^C Storage buffer:10mM Tris-HCl(pH 7.5);

200 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

No (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Bst2B I, 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of

1 μg of λ DNA with 10 units of Bst2B I

200 u.a.

1000 u.a.

for 16 hours.

E051

E043

E044

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	25-50	10-25	25-50	100

Bst2U I (prototype BstN I) Isolated from Bacillus stearothermophilus 2U

Concentration: 10 000 - 20 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer G, BSA

Reaction conditions: 1× SE Buffer G+BSA

Incubate at 60°C.

Not blocked by overlapping

dcm-methylation (C^mCWGG): <u>CCWGG</u>. To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final

concentration of 100 µg/ml.

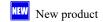
CC^WGG MGQ GGW^CC

Storage buffer:10mM Tris-HCl(pH 7.5); 200 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 μg/ml BSA, 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

No (80° C for 20 minutes)

E052 5000 u.a. Ligation/recutting assay: After 2-fold overdigestion with Bst2U I, none of the


1000 u.a.

DNA fragments can be ligated. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of Bst2U I for 16 hours.

Do not use BSA for long incubation.

SE Buffers В 0 W Activity in SE Buffers (% of max) 75-100 100 50-75 50-75 10-25

Qualified for human genome studies: http://science.sibenzyme.com/article8_article_31_1.phtml

Bst4C I (prototype Tsp4C I)

Isolated from Bacillus stearothermophilus 4C

Concentration: 10 000 units/ml Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 65°C.

Storage buffer 10 mM Tris-HCl (pH 7.5);

200 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol;

200 μg/ml BSA; 50% glycerol.

Activity in SE Buffers (% of max)

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

SE Buffers

No (65° C for 20 minutes)

ACN^GT

TG^NCA

B

75-100

E265

E266

E239

E240

Ligation/recutting assay: After 10-fold overdigestion with Bst4C I 50% of the DNA fragments can be ligated and recut. In the presence of 10% PEG ligation is

500 u.a.

2500 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Bst4C I

200 u.a.

1000 u.a.

for 16 hours G 75-100 10-25 100

Bst6 I (prototype Ksp632 I)

Isolated from Bacillus stearothermophilus 6 Concentration: 1 000 – 5 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA Reaction conditions:

1× SE Buffer Y+BSA Incubate at 65°C.

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final concentration of 100 µg/ml.

CTCTTC(N)1^ GAGAAG(N)₄^

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; $200~\mu g/ml$ BSA, 50% glycerol.

Store at -20°C (*see note). Diluent: SE Buffer A **Heat inactivation:**

> No (65° C for 20 minutes) Yes (80° C for 20 minutes)

Ligation/recutting assay: After 2-fold overdigestion with Bst6 I, 80% of the DNA fragments can be ligated and 80% of those can be recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 5 units of Bst6I for 16 hours.

Do not use BSA for long incubation. *Note: For long term storage (more than 30 days), store at -70°C

SE Buffers W G 75-100 Activity in SE Buffers (% of max) 75-100 75-100 50-75 100

GR^CGYC

C^TTAAG

GAATT^C

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

BstAC I (prototype Acy I) Isolated from Bacillus stearothermophilus AC

Concentration: 10 000 – 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W

Reaction conditions: 1×SE Buffer W

Incubate at 37°C.

CYGC^RG Storage buffer: 10 mM Tris-HCl (pH 7.5);

200 mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol;

200 µg/ml BSA; and 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Yes (8

Ligation/recutting assay: After 40-fold overdigestion with BstAC I, 95% of λ DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 40 units of BstACI for 16 hours.

500 u.a.

2500 u.a.

Yes (80° C for 20	minutes)				
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	75-100	50-75	100	75-100

E135

E136

E093

E094

BstAF I (prototype Afl II) Isolated from Bacillus stearothermophilus AF

Concentration: 20 000 units/ml Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA **Reaction conditions:**

1×SE Buffer W + BSA

Incubate at 55°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM KCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (80° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with BstAF I, about 40% of the DNA fragments can be ligated and 95% of those can be recut. In the presence of 10% PEG ligation is better. Overdigestion assay: No nonspecific

1000 u.a.

5000 u.a.

activity was detected after incubation of 1 μ g of λ DNA with 40 units of BstAF I for 16 hours.

Do not use BSA for long incubation

		Do not use	DOLL TOL	iong mouc	ation.
SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	10-25	25-50	75-100	100	25-50

20

BstAP I (prototype ApaB I)

Isolated from Bacillus stearothermophilus AP

Concentration: 5 000 units/ml Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W

Reaction conditions: 1×SE Buffer W

Incubate at 60°C.

BstAPI is a neoschizomer of ApaBI.

GCANNNN^NTGC CGTN^NNNNACG

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA; 1 mM DTT; 200 µg/ml BSA; and 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

> No (65° C for 20 minutes) Yes (80° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with BstAP I, > 90% of the DNA fragments can be ligated and recut.

200 u.a.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 5 units of BstAPI for 16 hours.

Star activity: High enzyme

E259

E260

E267

E268

50-75

E237

E238

E305

E306

concentration (>5 units for 16 hours) on Lug of DNA may result in star activity

		1μς 01 D11.	rt illay 105	art in star	activity.
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	25-50	75-100	100	25-50

T^GTACA

ACATG^T

10-25

BstAU I (prototype Bsp1407 I)

Isolated from Bacillus stearothermophilus AU Concentration: 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W

Reaction conditions: 1×SE Buffer W

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 100 μg/ml BSA; 50% glycerol.

Activity in SE Buffers (% of max)

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

SE Buffers

No (65° C for 20 minutes) Yes (80° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with BstAU I about 90% of λ DNA fragments can be ligated and recut.

1000 u.a.

5000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of BstAUI for 16 hours.

100

500 u.a.

2500 u.a.

25-50

25-50

BstBA I (prototype BsaA I)

Isolated from Bacillus stearothermophilus BA Concentration: 5 000 - 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA **Reaction Conditions:** 1×SE Buffer W+BSA Incubate at 65°C.

Blocked by CG methylation. To obtain 100% activity, BSA should be

added to the $1 \times reaction$ mix to a final concentration of 100 μg/ml.

YAC^GTR RTG^CAY

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0.1 mM EDTA; 10 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

Yes (80° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with BstBA I, > 90% of the DNA fragments can be ligated and

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of BstBA I for 16 hours.

500 u.a.

2500 u.a.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	25-50	75-100	100	25-50

GCN^NGC

CGN^NCG

BstC8 I (prototype Cac8 I) Isolated from Bacillus stearothermophilus BA

Concentration: 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 55°C

Incubation at 37°C results in 50% activity.

Storage buffer: 10 mM Tris-HCl (pH 7.5);

50 mM KCl; 0.1 mM EDTA; 10 mM 2-mercaptoethanol;

 $200~\mu g/ml$ BSA; and 50% glycerol.

Store at -20°C. Diluent: SE Buffer A

Heat inactivation:

Ligation/recutting assay: After 10-fold overdigestion with BstC8 I, > 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of BstC8 I for 16 hours.

No (65° C for 20 minutes)

- 10 (00 - 111 - 0					
SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	10-25	25-50	50-75	75-100	100

BstDE I (prototype Dde I)

Isolated from Bacillus stearothermophilus DE

Concentration: 10 000 – 20 000 units/ml Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer G

Reaction conditions: 1× SE Buffer G

Incubate at 60°C.

Incubation at 37°C results in 10% activity.

C^TNAG GANT^C E227 E228

for 16 hours.

E083

E084

500 u.a. 2500 u.a.

Ligation/recutting assay: After 30-fold

overdigestion with BstDE I, 90% of the

DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific

activity was detected after incubation of

1 μ g of λ DNA with 60 units of BstDE I

1000 u.a.

5000 u.a.

200 e.a.

1000 e.a.

Ligation/recutting assay: After 3-fold

overdigestion with BstEN I, about 60%

of the DNA fragments can be ligated. Of

Overdigestion assay: No nonspecific

activity was detected after incubation of

1 μ g of λ DNA with 5 units of BstEN I

25-50

Ligation/recutting assay: After 10-fold

overdigestion with BstDS I, 95% of the

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

Yes (80° C for 20	minutes)			
SE Buffers	В	G	О	W
Activity in SE Buffers (% of max)	75-100	100	25-50	50-7

C^CRYGG

GGYRC^C

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

BstDS I (prototype Dsa I)

Isolated from Bacillus stearothermophilus DS

Concentration: 10 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 65°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM KCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol;

200 μg/ml BSA; and 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of BstDS I

for 16 hours.

E103

E104

these, 90 % can be recut.

No (65° C for 20 minutes)

CCTNN^NNNAGG

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	0-10	75-100	50-75	25-50	100

BstEN I (prototype EcoN I) Isolated from Bacillus stearothermophilus EN

Concentration: 2 000 -5 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1× SE Buffer Y

Incubate at 65°C.

Not blocked by overlapping dcm-methylation (C^mCWGG): **CCWGGNNNAGG** or CCTNNNCCAGG.

GGANNN^NNTCC Storage buffer: 10 mM Tris-HCl (pH 7.5); 50

mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

SE Buffers

No (65° C for 20 minutes)

50-75

GGATGNN^

for 16 hours. Yes (80° C for 20 minutes)

E031

E032

50-75

BstF5 I (prototype Fok I) Isolated from Bacillus stearothermophilus F5

Concentration: 10 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 65°C.

BstF5I is a neoschizomer of FokI.

CCTAC^NN Storage buffer: 10 mM Tris-HCl (pH 7.5);

50 mM KCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 200 μg/ml BSA; 50% glycerol.

Activity in SE Buffers (% of max)

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with BstF5 I,

25-50

500 u.a.

2500 u.a.

100

> 90% of of the λ DNA fragments can be ligated. Of these, 95 % can be recut. Overdigestion assay: No nonspecific

activity was detected after incubation of 1 μg of λ DNA with 20 units of BstF5 I for 16 hours.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	50-75	25-50	50-75	100

CG^CG

GC^GC

BstFN I (prototype FnuD II) Isolated from Bacillus stearothermophilus FN

Concentration: 2 000 - 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 60°C.

Blocked by CG methylation.

Storage buffer: 20 mM Tris-HCl (pH 7.5);

300 mM NaCl; 0,1 mM EDTA; 10 mM MgCl₂; 7 mM 2-mercaptoethanol;

200 μg/ml BSA; 50% glycerol. Store at -20°C. Diluent: SE Buffer A

Heat inactivation:

Ligation/recutting assay: After 5-fold overdigestion with BstFN I, 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of BstFN I

300 u.a.

1500 u.a.

for 16 hours.

E283

E284

No (65° C for 20 minutes) SE Buffers Activity in SE Buffers (% of max)

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

BstH2 I (prototype Hae II)

Isolated from Bacillus stearothermophilus H2

Concentration: 10 000 - 30 000 units/ml Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA **Reaction conditions:**

1×SE Buffer Y+BSA

Incubate at 65°C.

To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM KH₂PO₄ (pH 7.2); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with BstH2 I, > 90% of the DNA fragments can be ligated and

500 u.a.

2500 u.a.

E171

E172

E143

E144

G

50-75

50-75

E291

E292

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of BstH2 I for 16 hours.

Star activity: High enzyme concentration results in star activity. Do not use BSA for long incubation

	Do not use BSA for long mediation.					
SE Buffers	В	G	0	W	Y	
Activity in SE Buffers (% of max)	50-75	50-75	0-10	10-25	100	

BStHH I (prototype Hha I) Isolated from Bacillus stearothermophilus HH

Concentration: 50 000 units/ml

Assayed on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y. BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 50°C.

Blocked by CG methylation

5'-G(5mC)GC-3'/3-CG(5mC)G-5' or 5'-G(5mC)GC-3'/3'-CGCG-5'

Not blocked by methylation

5'-GCG(5mC)-3'/3'-(5mC)GCG-5' or 5'-GCG(5mC)-3'/3'-CGCG-5'.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final

concentration of 100 µg/ml.

C^GCG Storage buffer: 10 mM Tris-HCl (pH 7.5); 50

GCG^C

RGCGC^Y

Y^CGCGR

mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg/ml BSA,

50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

SE Buffers

SE Buffers

No (65°C, 80° C for 20 minutes)

Ligation/recutting assay: After 40-fold overdigestion with BstHH I, > 90% of the DNA fragments can be ligated and

2000 u.a.

10000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 100 units of BstHH I for 16 hours.

Do not use BSA for long incubation.

О

25-50

BstKT I (prototype Mbo I)
Isolated from Bacillus stearothermophilus KT

Concentration: 2 000 – 5 000 units/ml Assayed on λ DNA (dam⁻)

Reagents Supplied with Enzyme:

10×SE Buffer W

Reaction conditions: 1 × SE Buffer W

Incubate at 37°C.

Blocked by overlapping dam-methylation (GmATC): GATC.

Not blocked by CG methylation.

Cut hemimethylated site: 5'- GmATC-3' / 5'-GATC-3'

BstKTI is a neoschizomer of MboI.

Activity in SE Buffers (% of max) 75-100 GAT^C E151 200 u.a. C^TAG E152 1000 u.a.

25-50

В

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 100 μg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

Activity in SE Buffers (% of max)

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with BstKT I, > 90% of the DNA fragments can be ligated and recut.

50-75

100

50-75

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 5 units of BstKT I for 16 hours.

BStMA I (prototype BsmA I)

Isolated from Bacillus stearothermophilus MA **Concentration:** 30 000 – 100 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA **Reaction conditions:**

1×SE Buffer W+BSA

Incubate at 55°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

GTCTC(N)1^ MGO CAGAG(N)₅^

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 100 μg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A

Heat inactivation:

Yes (65° C for 20 minutes)

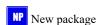
Ligation/recutting assay: After 50-fold overdigestion with BstMA I,

100

2000 u.a.

10 000 u.a.

75-100


>90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 100 units of BstMA I for 16 hours.

Do not use BSA for long incubation

	Do not use Berrion iong medication.					
SE Buffers	В	G	0	W	Y	
Activity in SE Buffers (% of max)	25-50	50-75	50-75	100	75-100	

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

^GATC E119 200 u.a. **BstMB** I (prototype Mbo I) CTAG^ E120 1000 u.a. Isolated from Bacillus stearothermophilus MB Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 Concentration: 5 000 - 10 000 units/ml Ligation/recutting assay: After 10-fold mM KCl; 0.1 mM EDTA; overdigestion with BstMB I, > 95% of Assaved on \(\DNA \) (dam⁻) 7 mM 2-mercaptoethanol; 200 µg/ml BSA, **Reagents Supplied with Enzyme:** the DNA fragments can be ligated and 50% glycerol. Store at -20°C. 10×SE Buffer O recut. Diluent: SE Buffer A Overdigestion assay: No nonspecific Reaction conditions: 1× SE Buffer O activity was detected after incubation of Heat inactivation: Incubate at 65°C. No (65° C for 20 minutes) 1 μg of λ DNA with 20 units of BstMB I **Blocked** by overlapping *dam*-methylation for 16 hours. (GmATC): GATC. Yes (80° C for 20 minutes) Not blocked by CG methylation. Not cut hemimethylated site: SE Buffers G W Y Activity in SE Buffers (% of max) 10 - 2525-50 75-100 10 - 255'- GmATC-3' / 3'-CTAG-5' 100 BstMC I (prototype Mcr I) CGRY^CG E071 500 u.a. 2500 u.a. GC^YRGC E072 Isolated from Bacillus stearothermophilus MC Concentration: 5 000 units/ml Storage buffer: 10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 5-fold 200 mM KCl; 0.1 mM EDTA; Assaved on \(\lambda \) DNA overdigestion with BstMC I, > 90% of Reagents Supplied with: 7 mM 2-mercaptoethanol; 200 μg/ml BSA; the DNA fragments can be ligated and 10×SE Buffer B, BSA 50% glycerol. Store at -20°C. recut. Overdigestion assay: No nonspecific Diluent: SE Buffer A Reaction conditions: 1×SE Buffer B+BSA activity was detected after incubation of Heat inactivation: Incubate at 50°C. No (65° C for 20 minutes) 1 μ g of λ DNA with 10 units of BstMC To obtain 100% activity, BSA should be I for 16 hours. added to the $1 \times reaction$ mix to a final Do not use BSA for long incubation. concentration of 100 µg/ml. SE Buffers R G 0 W Activity in SE Buffers (% of max) 75-100 10-25 10-25 50-75 100 BstMW I (prototype Mwo I) GCNNNNN^NNGC E459 500 u.a. **CGNN^NNNNNCG** E460 2500 u.a. Isolated from Bacillus stearothermophilus MW Concentration: 2 000 - 10 000 units/ml Storage buffer: 10 mM Tris-HCl(pH 7.5); 50 Ligation/recutting assay: After 5-fold Assayed on λ DNA mM KCl; 0.1 mM EDTA; overdigestion with BstMW I, > 95% of **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 200 μg/ml BSA, the DNA fragments can be ligated and 10×SE Buffer Y and 50% glycerol. Store at -20°C (*see note). Overdigestion assay: No nonspecific Reaction conditions: 1×SE Buffer Y Diluent: SE Buffer A activity was detected after incubation of Incubate at 55°C. 1 μg of λ DNA with 10 units of BstMW **Heat inactivation:** Incubation at 37° results in 20% activity. No (65° C for 20 minutes) I for 16 hours. *Note: For long term storage (more Yes (80° C for 20 minutes) than 7 days), store at -70°C SE Buffers В O W G 50-75 25-50 100 Activity in SE Buffers (% of max) 10-25 25 - 50BstNS I (prototype Nsp I) RCATG^Y E251 200 u.a. Y^GTACR E252 1000 u.a. Isolated from Bacillus stearothermophilus NS Storage buffer: 10 mM Tris-HCl (pH 7.5); Concentration: 10 000 units/ml Ligation/recutting assay: After 10-fold Assaved on \(\lambda \) DNA 250 mM NaCl; 0,1 mM EDTA; overdigestion with BstNS I, > 95% of **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol;; 100 μg/ml BSA; the DNA fragments can be ligated and 10×SE Buffer B, BSA 50% glycerol. Store at -20°C. Diluent: SE Buffer A Overdigestion assay: No nonspecific **Reaction conditions:** 1×SE Buffer B+BSA **Heat inactivation:** activity was detected after incubation of Incubate at 37°C. Yes (65° C for 20 minutes) 1 μg of λ DNA with 20 units of BstNS I To obtain 100% activity, BSA should be for 16 hours. added to the 1×reaction mix to a final Do not use BSA for long incubation. concentration of 100 µg/ml. SE Buffers В W G O Activity in SE Buffers (% of max) 50-75 10-25 10-25 75-100 100 GACNN^NNGTC E299 1000 u.a. BstPA I (prototype PshA I) CTGNN^NNCAG E300 5000 u.a. Isolated from Bacillus stearothermophilus PA Concentration: 10 000 -20 000 units/ml Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 Ligation/recutting assay: After 5-fold Assayed on λ DNA mM KCl; 0.1 mM EDTA; overdigestion with BstPA I, < 5% of the **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 200 μg/ml BSA, DNA fragments can be ligated. 10×SE Buffer Y 50% glycerol. Store at -20°C. Overdigestion assay: No nonspecific Reaction conditions: 1×SE Buffer Y Diluent: SE Buffer A activity was detected after incubation of $1~\mu g~$ of $~\lambda~DNA$ with 10~units of BstPA Incubate at 65°C. Heat inactivation: **No** (65° C, 80° C for 20 minutes) I for 16 hours at 25°C. Star activity: Incubation at 65°C for 16 hours results in star activity. SE Buffers В W G 50-75 Activity in SE Buffers (% of max) 25-50 50-75 50-75 100

BstSC I (prototype ScrF I)

Isolated from Bacillus stearothermophilus SC

Concentration: 2 000 – 5 000 units/ml Assaved on λ DNA (dcm-)

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 55°C.

Incubation at 37°C results in 10% activity. **Blocked** by overlapping dcm-methylation

(C^mCWGG): <u>CCWGG</u>.

BstSCI is a neoschizomer of ScrFI.

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA; and 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

Activity in SE Buffers (% of max)

MGQ

No (65° C for 20 minutes)

Yes (80° C for 20 minutes) SE Buffers

1 μg of λ DNA with 3 units of BstSC I for 16 hours.

100 u.a.

500 u.a.

Ligation/recutting assay: After 5-fold

overdigestion with BstSC I. > 95% of

the DNA fragments can be ligated and

Overdigestion assay: No nonspecific

activity was detected after incubation of

W G O 50-75 50-75 50-75 100

BstSF I (prototype Sfe I)

Isolated from Bacillus stearothermophilus SF Concentration: 2 000 - 5 000 units/ml

Assayed on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer O, BSA

Reaction conditions: 1×SE Buffer O+BSA

Incubate at 60°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

C^TRYAG GAYRT^C

50-75

^CCNGG

GGNCC^

E307

E308

E197

E198

E561

E562

G

100

E065

E066

Storage buffer: 10 mM Tris-HCl (pH 7.5);

GKGCM^C

B

50-75

TAC^GTA

ATG^CAT

100 mM KCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 200 μg/ml BSA;

and 50% glycerol. Store at -20°C. **Diluent:** SE Buffer A

Heat Inactivation:

No(65°C, 80°C for 20 minutes)

Ligation/recutting assay: After 3-fold overdigestion with BstSF I, > 95% of the DNA fragments can be ligated and recut.

200 u.a.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 5 units of BstSF I for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	75-100	25-50	100	50-75	50-75

BstSL I (prototype BseS I) Isolated from Bacillus stearothermophilus S

Concentration: 10 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer G, BSA

Reaction conditions: 1×SE Buffer G + BSA

Incubate at 55°C.

Not blocked by overlapping dcm-methylation (C^mCWGG):

GKGCCCWGG

Blocked by GKG^mCMC methylation. To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

C^MCGKG Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

Activity in SE Buffers (% of max)

SE Buffers

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with BstSL I, ~80% of the DNA fragments can be ligated. Of these, 95% can be recut.

500 u.a.

2500 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 10 units of BstSL I for 16 hours.

W

75-100

200 u.a.

1000 u.a.

75 - 100

Do not use BSA for long incubation.

 \mathbf{O} 50-75

BstSN I (prototype SnaB I) Isolated from Bacillus stearothermophilus SN

Concentration: 5 000 - 10 000 units/ml Assaved on T7 DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1×SE Buffer B

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 100 μg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with BstSN I, ~70% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of $1~\mu g~$ of T7 DNA with 5 units of BstSN I

for 16 hours. Star activity: High enzyme

concentration results in star activity. SE Buffers В О W G Activity in SE Buffers (% of max) 100 50-75 0 - 1010-25 50-75

BstV1 I (prototype Bbv I) Isolated from Bacillus stearothermophilus VI

Concentration: 1 000 – 2 000 units/ml Assayed on pBR322 DNA **Reagents Supplied with Enzyme:**

10×SE Buffer G

Reaction conditions: 1×SE Buffer G

Incubate at 55°C.

Incubation at 37° results in 10% activity.

GCAGC(N)8[^] CGTCG(N)₁₂^

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol Store at -20°C.

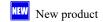
Diluent: SE Buffer A **Heat inactivation:**

> No (65° C for 20 minutes) Yes (80° C for 20 minutes)

Ligation/recutting assay: After 3-fold overdigestion with BstV1 I, > 90% of the DNA fragments can be ligated and recut.

100 u.a.

500 u.a.


Overdigestion assay: No nonspecific activity was detected after incubation of 1 ug of the DNA with 2 units of enzyme

for 16 hours.

E303

E304

SE Buffers G В Activity in SE Buffers (% of max) 75-100 100 75-100 75-100 75-100

BstV2 I (prototype Bbv II)

Isolated from Bacillus stearothermophilus V2

Concentration: 5 000 – 15 000 units/ml Assaved on λ DNA

Reagents Supplied with Buffer:

10×SE Buffer Y, BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 55°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

GAAGAC(N)2^ CTTCTG(N)6^ E297 E298

E465

E466

200 u.a. 1000 u.a.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA,

50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (65°C for 20 minutes)

CCANNNNN^NTGG

GGTN^NNNNNACC

Ligation/recutting assay: After 5-fold overdigestion with BstV2 I,

> 90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 5 units of BstV2 I for 16 hours.

Star activity: High enzyme concentration results in star activity. Do not use BSA for long incubation.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	75-100	75-100	25-50	25-50	100

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

SE Buffers

BstX I (prototype BstX I)

Isolated from Bacillus stearothermophilus X Concentration: 5 000 -15 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Buffer:

10×SE Buffer O

Reaction conditions: 1×SE Buffer O

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA;

50% glycerol. Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

10-25

R^GATCY

YCTAG^R

CATAGG(N)₅

Ligation/recutting assay: After 10-fold overdigestion with BstX I, > 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of BstX I

200 п.а.

1000 u.a.

for 16 hours W G O 10-25 100 75-100 25-50

BstX2 I (prototype Xho II)

Isolated from an E.coli strain that carries the BstX2I cloned gene from Bacillus stearothermophilus X2

Concentration: 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer G

Reaction conditions: 1×SE Buffer G

Incubate at 60°C.

Not blocked by overlapping

dam-methylation (GmATC): RGATCY.

Storage buffer: 10 mM Tris-HCl (pH 7.6); 100 mM NaCl; 0.1 mM EDTA; 1 mM DTT;

200 μg/ml BSA, 50% glycerol.

Activity in SE Buffers (% of max)

Store at -20°C. Diluent: SE Buffer A **Heat Inactivation:**

No (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with BstX2 I,

500 u.a.

2500 u.a.

> 95% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 5 units of BstX2 I

for 16 hours. G

E582

E229

E230

SE Buffers B G O W Activity in SE Buffers (% of max) 75-100 100 0-10 10-25	Bsu I (prototype BciVI)		ATCC(N)6	E581		200 u.a.	
SE Buffers B G O W		Activity in SE Buffers (% of max)	75-100	100	0-10	10-25	25-50
GED W		SE Buffers	В	G	O	W	Y

Isolated from Bacillus sphaericus Concentration: 2 000 - 5 000 units/ml

Assayed on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA; 0,05% Triton X-100, 50% glycerol.

Store at -20°C. Diluent: SE Buffer A

Heat Inactivation: Yes (65° C for 20 minutes) Ligation/recutting assay: After 5-fold overdigestion with BsuI 10% of the DNA fragments can be ligated with T4 DNA Ligase and recut.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 6 units of BsuI for

1000 u.a.

5000 u.a..

Ligation/recutting assay: After 20-fold

overdigestion with BsuR I, > 90% of the

DNA fragments can be ligated and recut.

16 hours at 37°C.

E053

E054

SE Buffers	В	G	О	W	Y	
Activity in SE Buffers (% of max)	75-100	50-75	10-25	25-50	100	Ī

GG^CC

CC^GG

BsuR I (prototype Hae III) Isolated from Bacillus subtilis R

Concentration: 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer G

Reaction conditions: 1×SE Buffer G

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of BsuR I

for 16 hours

No (65° C for 20 minutes) SE Buffers W

Activity in SE Buffers (% of max) 75-100 100 25-50 50-75 50-75 Btr I (prototype Btr I)

Isolated from Bacillus stearothermophilus SE-

GTG^CAG

CAC^GTC

E277 E278

E565

E566

E203

E204

100 u.a. 500 u.a.

Concentration: 2 000 - 5 000 units/ml

Assayed on \(\lambda \) DNA **Reagents Supplied with Enzyme:**

10×SE Buffer O, BSA Reaction conditions: 1×SE Buffer O+BSA

Incubate at 60°C. To obtain 100% activity, BSA should be

added to the 1× reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA; and 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

> No (65° C for 20 minutes) Yes (80° C for 20 minutes)

Ligation/recutting assay: After 3-fold overdigestion with Btr I, 80% of the DNA fragments can be ligated. Of these, 90 % can be recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 5 units of Btr I for 16 hours.

Star activity: High enzyme concentration results in star activity. Do not use BSA for long incubation.

SE Buffers В O W G Activity in SE Buffers (% of max) 75-100 75-100 100 75-100 75-100

T^CATGA

0 - 10

Cci I (prototype BspH I)

Isolated from Curtobacterium citreum Concentration: 20000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA **Reaction conditions:** 1×SE Buffer W + BSA Incubate at 55°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

AGTAC^T Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Activity in SE Buffers (% of max)

SE Buffers

Yes (80° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Cci I, > 90% of the DNA fragments can be ligated and recut with.

1000 u.a.

5000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 40 units of Cci I for 16 hours.

Do not use BSA for long incubation. 10-25 25-50 100 75-100

CciN I (prototype Not I) Isolated from Curtobacterium citreum N

Concentration: 2000 -5000 units/ml Assayed on Ad2 DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 37°C.

Blocked by CG methylation.

GC^GGCCGC CGCCGG^CG

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with CciN I, > 95% of the DNA fragments can be ligated and recut with.

200 u.a.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of Ad2 DNA with 10 units of CciN I for 16 hours.

Star activity: High enzyme

concentration may result in star activity.

SE Buffers В G 0 Activity in SE Buffers (% of max) 25-50 50-75 75-100 75-100 100

TTT^AAAA

Dra I (prototype Aha III) Isolated from Deinococcus radiophilus

Concentration: 10 000 - 30 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer G, BSA

Reaction conditions: 1×SE Buffer G+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

AAA^TTT Storage buffer: 10 mM Tris-HCl (pH 7.5);

250 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 100 μg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

E055 1000 u.a. E056 5000 u.a..

Ligation/recutting assay: After 10-fold overdigestion with DraI ~70% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 30 units of Dra 1 for 16 hours.

Do not use BSA for long incubation.

SE Buffers G O Activity in SE Buffers (% of max) 75-100 100 25-50 75-100 75-100

Dra III (prototype Dra III)

Isolated from an *E.coli* strain that carries the cloned DraIII gene from *Deinococcus radiophilus*

Concentration: 5 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer 2K, BSA

Reaction conditions: 1×SE Buffer 2K+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of 100 μ g/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 300 mM NaCl; 0.1 mM EDTA;

1 mM DTT; 200 µg/ml BSA, 50% glycerol.

Store at -20°C. **Diluent:** SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

CACNNN^GTG

GTG^NNNCAC

Ligation/recutting assay: After 5-fold overdigestion with Dra III, about 70% of the DNA fragments can be ligated and recut. In the presence of 10% PEG ligation is better.

500 u.a.

2500 u.a.

E309

E310

E193

E194

75-100

E241

E242

E469

E470

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 10 units of DraIII for 16 hours.

Star activity: High concentration of enzyme may result in star activity. **Do not use** BSA for long incubation.

Do not use Berrior long medication.					ation.
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	50-75	75-100	75-100	50-75

Dri I (prototype Eam1105 I)

Isolated from *Deinococcus radiophilus* EA

Concentration: 5 000 -10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 37°C.

GACNNN^NNGTC CTGNN^NNNCAG

Storage buffer: 10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol

Store at -20°C. **Diluent:** SE Buffer A **Heat inactivation:**

Activity in SE Buffers (% of max)

SE Buffers

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with DriI, about 5% of the DNA fragments can be ligated. In the presence of 10% PEG ligation is better. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of Dri I

200 u.a.

10-25

500 u.a.

2500 u.a.

100

1000 u.a.

for 16 hours.

G O W Y

10-25

DseD I (prototype Drd I)

Isolated from *Deinococcus* species D2

Concentration: 10 000 – 30 000 units/ml Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y. BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of 100 μ g/ml.

GACNNNN^NNGTC CTGNN^NNNNCAG

75-100

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μ g/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

No (65°C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with DseD I, > 90% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 10 units of DseD I

for 16 hours. **Do not use** BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	75-100	25-50	50-75	100

GAG^CTC

EcoICR I (prototype Sac I) Isolated from Escherichia coli ICR

Concentration: 2 000 - 10 000 units/ml Assayed on λ DNA (Hind III-digest) Reagents Supplied with Enzyme:

10×SE Buffer G, BSA

Reaction conditions: 1×SE Buffer G+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of 100 μ g/ml.

EcoICRI is a neoschizomer of SacI.

CTC^GAG Storage buffer: 10 mM Tris-HCl (pH 7.5); 50

mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol, 50% glycerol.

Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with EcoICR I, > 95% of the DNA fragments can be ligated and recut.


200 u.a.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 10 units of EcoICR I for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	75-100	100	0-10	0-10	75-100

28

EcoR I (prototype EcoR I)

Isolated from an *E.coli* strain that carries the cloned EcoR I gene from *Escherichia coli*

G^AATTC CTTAA^G E057 E058

E059

E060

E243

E244

E061

E062

5000 u.a. 25000 u.a.

For high concentration

E057X 5000 u.a. E058X 25000 u.a.

Concentration: 20 000 and 50 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

5×SE Buffer EcoR I, BSA

Reaction conditions:

1×SE Buffer EcoRI+BSA Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of 100 μ g/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 50-fold overdigestion with EcoR I, 95% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 40 units of EcoR I for 16 hours.

Star activity: High concentration of enzyme results in star activity. **Do not use** BSA for long incubation.

				0	
SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	50-75	75-100	75-100	75-100	50-75

GAT^ATC

CTA[^]TAG

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

EcoR V (prototype EcoR V)

Isolated from an *E.coli* strain that carries the cloned EcoR V gene from *Escherichia coli*

Concentration: 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA

Reaction conditions: 1×SE Buffer W+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of $100 \mu g/ml$.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT;

 $200~\mu g/ml$ BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with EcoR V, 90% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of EcoR V for 16 hours.

2000 u.a.

10000 u.a.

Star activity: High enzyme concentration results in star activity. **Do not use** BSA for long incubation.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	0-10	25-50	50-75	100	25-50

GGC^GCC

CCG^CGG

Ege I (prototype Nar I)

Isolated from Enterobacter gergoviae

Concentration: 5 000 – 10 000 units/ml Assayed on λ DNA (HindIII-digest) Reagents Supplied with Enzyme:

10×SE Buffer B, BSA

Reaction conditions: 1×SE Buffer B+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

EgeI is a neoschizomer of NarI.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with Ege I, 70% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μg of the DNA with 10 units of Ege I for 16 hours.

200 u.a.

1000 u.a.

1000 u.a.

5000 u.a.

Do not use BSA for long incubation.

Activity in SE Buffers (% of max) 100 75-100 10-25 50-75 75-100	SE Buffers	В	G	О	W	Y
	Activity in SE Butters (% of mo	x) 100	75-100	10-25		75-100

C^CWWGG

GGWWC^C

Erh I (prototype Sty I)

Isolated from *Erwinia rhapontici*Concentration: 10 000 - 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer 2W, BSA

Reaction conditions: 1 ×SE Buffer 2W+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of 100 μ g/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA,

50% glycerol. Store at -20°C. **Diluent:** SE Buffer A

Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Erh I, 95% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific

activity was detected after incubation of 1 μg of λ DNA with 50 units of ErhI for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	10-25	25-50	25-50	75-100	10-25

CATG^ E495 50 u.a. Fae I (prototype Nla III) ^GTAC E496 250 u.a. Isolated from Flavobacterium aquatile N3 Concentration: 500 - 2 000 units/ml Storage buffer: 10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 2-fold Assaved on pUC19 DNA 50 mM KCl; 0,1 mM EDTA; overdigestion with Fae I,>90% of the Reagents Supplied with Enzyme: 7 mM 2-mercaptoethanol; 200 µg/ml BSA; DNA fragments can be ligated with T4 DNA Ligase and recut. 10×SE Buffer Fael, BSA 50% glycerol. Store at -20°C. Overdigestion assay: No nonspecific **Reaction conditions:** Diluent: SE Buffer A activity was detected after incubation of 1 ×SE Buffer FaeI+BSA **Heat inactivation:** 1 μg of pUC19 DNA with 1 units of Fae Yes (65° C for 20 minutes) Incubate at 37°C. I for 16 hours. Blocked by C^mATG methylation. To obtain 100% activity, BSA should be Do not use BSA for long incubation. SE Buffers В G 0 W added to the 1× reaction mix to a final Activity in SE Buffers (% of max) 25-50 50-75 10-25 10 - 2575-100 concentration of 100 µg/ml. YA^TR E551 50 u.a. Fai I (prototype Fai I) RT^AY E552 250 u.a. Isolated from Flavobacterium aquatile B15 Storage buffer: 10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 3-fold Fail cleaves 4 expected recognition sites as well as several other sites with a weaker 100 mM KCl; 0,1 mM EDTA; overdigestion with Fai I, about 90% of the pUC19 DNA fragments can be activity 7 mM 2-mercaptoethanol; 200 μg/ml BSA; Concentration: 2 000 units/ml ligated with DNA Ligase and recut. 50% glycerol. Store at -20°C. One unit is defined as the amount of enzyme Note! In the case of long incubation Heat inactivation: required to cleave 1 pmol of the doublewith Fai I DNA can be digested to small Yes (80° C for 20 minutes) stranded oligonucleotide with the following oligos. structure 5'- CGAGTTCA^TAGCTGGGCCCAAC -3' 3'- GCTCAAGT^ATCGACCCGGGTTG -5' in 1 hour at 50°C in a total reaction volume of **Reagents Supplied with Enzyme:** 10×SE Buffer B Reaction conditions: 1 ×SE Buffer B SE Buffers В Incubate at 50°C. Activity in SE Buffers (% of max) 10-25 25-10 ^(N)8AAGN5CTT(N)13^ E153 100 u.a. Fal I (prototype Fal I) $^{\land}(N)_{13}TTCN_5GAA(N)_8^{\land}$ E154 500 u.a. Isolated from Flavobacterium aquatile Ob10 Concentration: 1 000 - 3 000 units/ml Storage buffer: 10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 3-fold 250 mM NaCl; 0,1 mM EDTA; overdigestion with Fal I, 20% of the Assayed on \(\lambda \) DNA Reagents Supplied with Enzyme: DNA fragments can be ligated. Of these, 7 mM 2-mercaptoethanol; 200 μg/ml BSA; 80 % can be recut. In the presence of 10×SE Buffer W, SAM 50% glycerol. Store at -20°C. **Reaction conditions:** Diluent: SE Buffer A 10% PEG ligation is better. Overdigestion assay: No nonspecific 1 ×SE Buffer W+SAM Heat inactivation: activity was detected after incubation of Incubate at 37°C. Yes (65° C for 20 minutes) 1 μg of λ DNA with 5 units of Fal I for To obtain 100% activity, SAM should be 16 hours. added to a final concentration 0.01 mM. Star activity: High enzyme

concentration results in star activity.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	0-10	25-50	75-100	100	50-75

^CATG

GTAC^

Fat I (prototype Nla III)

Isolated from an E.coli strain that carries the cloned Fat I gene from Flavobacterium aquatile NL3

Concentration: 2 000 - 5 000 units/ml Assayed on DNA pUC19

Reagents Supplied with Enzyme:

10×SE Buffer G

Reaction conditions: 1×SE Buffer G

Incubate at 55°C.

Blocked by "CATG methylation. FatI is a neoschizomer of NlaIII. Storage buffer: 10 mM Tris-HCl (pH 7.5);

Heat Inactivation:

50 mM KCl; 0,1 mM EDTA; 1 mM DTT; 200 μg/ml BSA; 50% glycerol. Store at -20°C. Diluent: SE Buffer A

Yes (65° C for 20 minutes) SE Buffers В Activity in SE Buffers (% of max) 10 - 25 Ligation/recutting assay: After 2-fold overdigestion with Fat I, > 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of the DNA with 3 units of Fat I for

100 u.a.

500 u.a.

E155

E156

16 hours. G $\mathbf{0}$ 100 25-50 10 - 2550-75

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

Fau I (prototype Fau I)

Isolated from an *E.coli strain* that carries the cloned Fau I gene from *Flavobacterium aquatili*

Concentration: 2 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1×SE Buffer B

Incubate at 55°C.

Blocked by CG methylation.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 200 µg/ml BSA and 50% glycerol.

Store at -20°C. **Diluent:** SE Buffer A **Heat Inactivation:**

Yes (65° C for 20 minutes)

CCCGC(N)4^

GGGCG(N)6^

Ligation/recutting assay: After 2-fold overdigestion with Fau I, > 90% of the DNA fragments can be ligated. Of these, 95 % can be recut.

100 u.a.

500 u.a.

E209

E210

E009

E010

E271

E272

E247

E248

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 4 units of Fau I for 16 hours.

1000 u.a.

5000 u.a.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	100	25-50	0-10	0-10	50-75

CA^TATG

GTAT^AC

FauND I (prototype Nde I)

Isolated from an *E.coli strain* that carries the cloned FauND I gene from

Flavobacterium aquatili ND

Concentration: 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction conditions: 1× SE Buffer Y+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of 100 μ g/ml.

MGQ

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA; 1mM DTT;

200 μg/ml BSA, 50% glycerol. Store at -20°C. **Diluent:** SE Buffer A

Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with FauND I, 80% of the DNA fragments can be ligated and recut. In the presence of 10% PEG ligation is better.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of FauND I for 16 hours.

Note: Sensitive to impurities present in some DNA preparations. For example, DNA purified by standard miniprep procedures is cleaved at lower rate.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	75-100	10-25	50-75	100

GT^MKAC

CAKM^TG

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

Fbl I (prototype Acc I)

Isolated from an *E.coli* strain that carries the cloned Fbl I gene from Flavobacterium balustinum

Concentration: 1 000 – 2 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 55°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

No (65° C for 20 minutes)

GGATG(N)9^

CCTAC(N)13^

Ligation/recutting assay: After 2-fold overdigestion with Fbl I, 90% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 2 units of Fbl I for

100 u.a.

500 u.a.

100 u.a.

500 u.a.

NO (03 C 101	20 minutes)	10 Hours.			
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	75-100	0-10	50-75	100

Fok I (prototype Fok I)

Isolated from an *E.coli* strain that carries the cloned Fok I gene from *Flavobacterium okeanokoites*

Concentration: 1 000 – 2 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: SE Buffer Y

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT;

200 μg/ml BSA, 50% glycerol.

Store at -20°C. **Diluent:** SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 2-fold overdigestion with Fok I, > 95% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 1 units of Fok I for 16 hours.

Note: Overdigestions of > 5 units of Fok I per 1µg of DNA and incubation times > 2 hours are not recommended.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	50-75	25-50	25-50	100

FriO I (prototype Ban II)

Isolated from Flavobacterium rigense O

Concentration: 10 000 - 40 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM KCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA,

50% glycerol. Store at -20°C. Diluent: SE Buffer A

Heat inactivation: Yes (65° C for 20 minutes) Ligation/recutting assay: After 20-fold overdigestion with FriO I, 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 40 units of FriOI for 16 hours.

1000 u.a.

5000 u.a.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	75-100	10-25	0-10	100

GC^NGC

CGN^CG

GRGCY^C

C^YCGRG

E157

E158

E095

E096

FSP4H I (prototype Fnu4H I) Isolated from an E.coli strain that carries the cloned Fsp4H I gene from

Flavobacterium species 4H

Concentration: 3 000 - 5 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1× SE Buffer Y

Incubate at 37°C.

MGO

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 200 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

Activity in SE Buffers (% of max)

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with Fsp4H I, about 5% of the DNA fragments can be ligated and recut.

200 u.a.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of Fsp4H I

for 16 hours. G 75-100 25-50 100

Oualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

SE Buffers

Gla I (prototype GlaI)

Pu(5mC)^GPy PyG^(5mC)Pu

B

50-75

E493 E494

100 u.a. 500 u.a.

Isolated from Glacial ice bacterium GL 29 See page 54 for more information about this enzyme.

Glu I (prototype GluI) Isolated from Glacial ice bacterium GL 24

 $G(5mC)^NG(5mC)$ $(5mC)GN^{(5mC)}G$

CCCAG^C

G^GGTCG

E519 E520

E563

E564

100 u.a. 500 u.a.

1000 u.a.

5000 u.a.

See page 55 for more information about this enzyme.

Gsa I (prototype BseY I)

Isolated from Geobacillus stearothermophilus Y Concentration: 10 000-20 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA

Reaction conditions: 1×SE Buffer W+BSA

Incubate at 70°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol;200 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

No (80° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Gsa I, > 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of Gsa I for 16 hours.

Do not use BSA for long incubation.

SE Buffers 0 W B G Activity in SE Buffers (% of max) 10-25 25-50 75-100 100 75-100

Hae III (prototype Hae III)

Isolated from an E.coli strain that carries the cloned Hae III gene from Haemophilus aegyptius

MGQ

GG^CC CC^GG

E067 E068

2000 u.a. 10000 u.a.

For high concentration

E067X 2000 u.a. 10000 u.a. E068X

Concentration: 10 000 and 50 000 units/ml

Assayed on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer G

Reaction conditions: 1× SE Buffer G

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA; 1 mM DTT;

200 μg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

No (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Hae III, > 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of Hae III for 16 hours.

Yes (80° C for 20 minutes)

165 (00 € 101	20 1111114105)				
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	100	25-50	50-75	50-75

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 27 1.phtml

Hga I (prototype Hga I)

Isolated from E.coli strain that carries the cloned HgaI gene from Haemophilus gallinarum

Concentration: 1 000 units/ml Assayed on pBR322 DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1× SE Buffer B

Incubate at 37°C.

Blocked by CG methylation.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 200 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Ligation/recutting assay: After 3-fold overdigestion with Hga I, > 90% of the DNA fragments can be ligated and recut. Note: Incubation with >2 units of HgaI per 1 µg of DNA and digestion > 1 hour is not recommended.

50 u.a.

250 u.a.

Yes (65° C for 20 minutes)

GACGC(N)5^

CTGCG(N)10^

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	100	75-100	10-25	25-50	50-75

GTY^RAC

CAR^YTG

E461

E462

E201

E202

Hind II (prototype Hind II)

Isolated from an E.coli strain that carries the cloned Hind II gene from Haemophilus influenzae

Concentration: 10 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer G, BSA

Reaction conditions: 1×SE Buffer G+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 200 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Hind II, > 60% of the DNA fragments can be ligated and recut. In the presence of 10% PEG ligation is

1000 u.a.

5000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Hind II for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	O	W	Y
Activity in SE Buffers (% of max)	75-100	100	25-50	25-50	75-100

Hind III (prototype Hind III)

Isolated from an E.coli strain that carries the cloned Hind III gene from Haemophilus influenzae Rd

A^AGCTT TTCGA^A E073 5000 u.a. E074 25000 u.a.

For high concentration E073X 5000 u.a. E074X 25000 u.a.

Concentration: 20 000 100 000 and

units/ml

Assayed on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer W. BSA **Reaction conditions:**

1 ×SE Buffer W+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

> No (65° C for 20 minutes) Yes (80° C for 20 minutes)

Ligation/recutting assay: After 50-fold overdigestion with Hind III, 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 40 units of Hind III for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	10-25	25-50	0-10	100	0-10

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

Hinf I (prototype Hinf I)

Isolated from an E.coli strain that carries the cloned Hinf I gene from Haemophilus influenzae

G^ANTC CTNA^G E075 E076

2000 u.a. 10000 u.a.

10000 u.a.

For high concentration

Concentration: 20 000 and 40 000 units/ml Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer O

Reaction conditions: 1× SE Buffer O

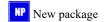
Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT;

200 µg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

No (65° C for 20 minutes)


Ligation/recutting assay: After 20-fold overdigestion with Hinf I, > 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 40 units of Hinf I

for 16 hours.

E076X

1 es (80 C 101	20 mmutes)				
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	75-100	100	75-100	75-100

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

Hpa I (prototype Hpa I)

Isolated from an *E.coli* strain that carries the cloned Hpa I gene from *Haemophilus* parainfluenzae

Concentration: 5 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1× SE Buffer Y

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 200 µg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

GTT^AAC

CAA^TTG

Ligation/recutting assay: After 5-fold overdigestion with Hpa I, 60% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 5 units of Hpa I for 16 hours.

500 u.a.

500 u.a.

2500 u.a.

Ligation/recutting assay: After 10-fold

overdigestion with Hpa II, > 95% of the

DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific

activity was detected after incubation of

1 μg of λ DNA with 10 units of Hpa II

2500 u.a.

Star activity: High enzyme

E077

E078

E161

E162

E583

E584

75-100

E069

E070

	concentration results in star activity.					
SE Buffers	В	G	0	W	Y	
Activity in SE Buffers (% of max)	0-10	50-75	10-25	25-50	100	

C^CGG

GGC^C

Hpa II (prototype Hpa II)

Isolated from an *E.coli* strain that carries the cloned Hpa II gene from *Haemophilus* parainfluenzae

Concentration: 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1×SE Buffer B

Incubate at 37°C.

Blocked by CG methylation.

MGQ

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT; 100 µg/ml BSA; 50% glycerol.

Store at -20°C.

Diluent: SE Buffer A
Heat inactivation:

No (65° C for 20 minutes) for 16 hours.

A^CGT

TGC^A

В

75-100

G^CGC

CGC^G

 SE Buffers
 B
 G
 O
 W
 Y

 Activity in SE Buffers (% of max)
 100
 50-75
 10-25
 25-50
 50-75

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

HpySE526 I(prototype Mae II)

Isolated from an *E.coli* strain that carries the cloned HpySE526 I gene from *Helicobacter pylori* SE526.

Concentration: 5 000 units/ml Assayed on pUC19 DNA Reagents Supplied with Enzyme:

10×SE BufferY

ReactionConditions: 1× SE Buffer Y

Incubate at 37°C.

Blocked by CG methylation

NEW

Storage buffer: 10 mM Tris-HCl (pH 7.6); 100 mM NaCl; 0.1 mM EDTA;

200 μg/ml BSA; 50% glycerol.

Activity in SE Buffers (% of max)

Store at -20°C. **Diluent:** SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with HpySE526 I about 95% of the DNA fragments can be ligated with T4 DNA Ligase and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 5 units of

200 u.a.

1000 u.a.

HpySE526 I for 16 hours.

G O W Y

25-50

1000 u.a.

5000 u.a.

100

10-25

HspA I (prototype Hha I)

Isolated from an *E.coli* strain that carries the cloned HspA I gene from *Haemophilus* species A1

Concentration: 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE BufferY

ReactionConditions: 1× SE Buffer Y

Incubate at 37°C.

Blocked by CG methylation 5'-G(5mC)GC-3'/3'-CG(5mC)G-5'. Not blocked by methylation 5'-GCG(5mC)-3'/3'-CGCG-5' or 5'-GCG(5mC)-3'/3'-(5mC)GCG-5'. HspAI is a neoschizomer of HhaI. MGQ

SE Buffers

Storage buffer: 10 mM Tris-HCl (pH 7.5);

50 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 μg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A
Heat inactivation:

No (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with HspA I, > 90% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of HspA I for 16 hours.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	50-75	25-50	25-50	100

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

Kpn I (prototype Kpn I)

Isolated from an E.coli strain that carries the cloned Kpn I gene from Klebsiella pneumonia

GGTAC^C C^CATGG E079 E080

2000 u.a. 10000 u.a.

For high concentration

E079X 2000 u.a. E080X 10000 u.a.

Concentration: 20 000 and 40 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer B, BSA

Reaction conditions: 1×SE Buffer B+BSA

Incubate at 37°C.

Not blocked by overlapping dcm-methylation

(CmCWGG): GGTACCWGG.

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT;

200 μg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes) for 16 hours.

Ligation/recutting assay: After 20-fold overdigestion with Kpn I. > 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Kpn I

Do not use BSA for long incubation.

SE Buffers	В	G	O	W	Y
Activity in SE Buffers (% of max)	100	25-50	25-50	25-50	75-100

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

G^C(5mC)GGC E541 50 u.a. **Kro I** (prototype Kro I) E542 CGG(5mC)C^G 250 u.a. Isolated from Kocurea rosea 307

See page 56 for more information about this enzyme.

Ksp22 I (prototype Bcl I)

Isolated from Kurthia species 22 Concentration: 10 000 - 30 000 units/ml

Assayed on λ DNA (dam-) **Reagents Supplied with Enzyme:**

10×SE Buffer 2K, BSA

Reaction conditions: 1×SE Buffer 2K+BSA

Incubate at 37°C.

Blocked by overlapping dam-methylation

 (G^mATC) : $T\underline{GATC}A$.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final

concentration of 100 µg/ml.

MGO

T^GATCA ACTAG^T E081 E082 1000 u.a. 5000 u.a.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg/ml BSA,

50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Ksp22 I, >90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Ksp22 I for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	50-75	100	50-75	50-75	25-50

^GATC

CTAG^

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

MGQ

Kz09 I (prototype Mbo I)

Isolated from Kurthia zopfii 9 **Concentration:** 1 000 – 5 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer G

Reaction conditions: 1×SE Buffer G

Incubate at 37°C.

Not blocked by overlapping dam-methylation (GmATC): GATC.

Blocked by CG methylation.

Cleaved of DNA is impaired by overlapping

CG methylation: GAT^mCG.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA; and 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with Kzo9 I,

200 u.a.

1000 u.a.

> 95% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 2 units of Kzo9I for

16 hours.

E187

E188

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	100	50-75	50-75	50-75

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 27 1.phtml

Lmn I (prototype Lmn I) Isolated from Lysinibacillus manganicus An22

Concentration: 500 - 1 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1×SE Buffer B

Incubate at 37°C.

NEW

GCTCCN^ CGAG^GN E593 E594

50 e.a. 250 e.a.

Storage buffer: 20 mM Tris-HCl (pH 7.5); 250 mM NaCl; 100 μg/ml BSA;

SE Buffers

7 mM 2-mercaptoethanol; and 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 3-fold overdigestion with Lmn I 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 2 units of Lmn I for

16 hours. G Activity in SE Buffers (% of max) 100 75-100 50-75 50-75 75-100 Mab I (prototype SexA I)

Isolated from Microbacterium arborescens SE

Concentration: 1 000 – 5 000 units/ml Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer W, BSA

Reaction conditions: 1×SE Buffer W+BSA

Incubate at 37°C.

Not blocked by overlapping

dcm-methylation

(C^mC(A/T)GG): ACCWGGT.

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA,

50% glycerol. Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

A^CCWGGT

TGGWCC^A

Ligation/recutting assay: After 5-fold overdigestion with Mab I, 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of Mab I for 16 hours.

200 u.a.

1000 u.a.

E121

E122

E471

E472

E295

E296

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	50-75	75-100	100	50-75

Mal I (prototype Dpn I) Isolated from Marinococus albus I G(mA)^TC CT^(mA)G	E489 E490	50 u.a. 250 u.a.	
--	--------------	---------------------	--

See page 56 for more information about this enzyme.

Mbo II (prototype Mbo II)

Isolated from an *E.coli* strain that carries the cloned Mbo II gene from Moraxella bovis

Concentration: 5 000 units/ml Assayed on λ DNA (dam⁻) **Reagents Supplied with Enzyme:**

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 37°C.

Blocked by overlappin dam-methylation

(G^mATC): GAAGATC.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT;

200 μg/ml BSA;50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with Mbo II, 60% of the DNA fragments can be ligated and recut. In presence of 10% PEG ligation is better.

200 u.a.

1000 u.a.

activity was detected after incubation of 1 ug of DNA with 5 units of enzyme for 16 hours at 37°C.

Overdigestion assay: No nonspecific

 SE Buffers	В	G	O	W	Y
Activity in SE Buffers (% of max)	75-100	75-100	25-50	50-75	100

${f Mfe\ I}$ (prototype Mfe I)

Isolated from an E.coli strain that carries the cloned MfeI gene from Mycoplasma fermentans

Concentration: 20 000 units/ml Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer B, BSA

Reaction conditions: 1×SE Buffer B+BSA

Incubate at 37°C

To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 µg/ml.

C^AATTG GTTAA^C

GAAGA(N)8[^]

CTTCT(N)7^

Storage buffer: 10 mM Tris-HCl (pH 7.6); 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT; 200 μg/ml BSA, 50% glycerol.

Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Mfe I, about 90% of the DNA fragments can be ligated and

1000 u.a.

5000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of Mfe I for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	O	W	Y
Activity in SE Buffers (% of max)	100	75-100	10-25	25-50	75-100

GDGCH^C

C^HCGDG

Mhl I (prototype Sdu I) Isolated from Micrococcus halobius SD

Concentration: 5 000 - 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W

Reaction conditions: 1 × SE Buffer W

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

> No (65° C for 20 minutes) Yes (80° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Mhl I, >90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of Mhl I

500 u.a.

2500 u.a.

1000 u.a.

5000 u.a.

for 16 hours.

E085

E086

E049

E050

Star activity: High enzyme concentration results in star activity.

					,
SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	10-25	25-50	75-100	100	10-25

A^CGCGT

TGCGC^A

MIU I (prototype Mlu I) Isolated from Micrococcus luteus

Concentration: 10 000 - 30 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer O

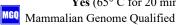
Reaction conditions: 1× SE Buffer O

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA;

50% glycerol. Store at -20°C.


Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Mlu I, 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Mlu I

for 16 hours. New package

New product

	SE Buffers	B 0-10	G 10-25	O 100	W 25-50	Y 10-25
Mly113 I (prototype Nar I) Isolated from Micrococcus lylae 113		G^CGCC CGC^GG	E189 E190	2	25-50 200 u.a. 000 u.a.	10-25
Concentration: 3 000 – 5 000 units/ml Assayed on T7 DNA Reagents Supplied with Enzyme: 10×SE Buffer B Reaction conditions: 1× SE Buffer B Incubate at 37°C.	Storage buffer: 10 mM Tris-HCl 50 mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 μg/50% glycerol. Store at -20°C. Diluent: SE Buffer A Heat inactivation:	50 mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 μg/ml BSA; 50% glycerol. Store at -20°C. Diluent: SE Buffer A Heat inactivation: Yes (65° C for 20 minutes)			Assay: Affly113 I, can be live. No not after incomparts a with 10 s.	> 80% of gated an onspecific ubation of units of
	SE Buffers Activity in SE Buffers (% of max)	B 100	G 25-50	O 10-25	W 10-25	Y 50-75
Mnl I (prototype Mnl I) Isolated from an <i>E.coli</i> strain that carries the cloned MnlI gene from <i>Moraxella nonliquefaciens</i>	Co	CTC(N) ₇ ^ GAG(N) ₆ ^	E481 E482	5	500 u.a. 500 u.a.	
Concentration: 10 000 units/ml Assayed on λ DNA Reagents Supplied with Enzyme: 10×SE Buffer G, BSA Reaction conditions: 1×SE Buffer G+BSA	Storage buffer: 10 mM Tris-HCl 200 mM NaCl; 0,1 mM EDTA; 1 mm 200 µg/ml BSA, 50% glycerol. Store at -20°C. Diluent: SE Buffer A		Ligation/r overdigesti the DNA recut. Overdiges	ion with M fragments stion assa	Inl I, abou can be li y: No n	ut 50% of gated and onspecifi
Incubate at 37°C. Blocked by overlapping CG methylation: CCT^mCG .	Heat inactivation: activity was detected Yes (65° C for 20 minutes) activity was detected 1 μ g of λ DNA with for 16 hours. Do not use BSA for λ				n 10 units	s of Mnl
To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of 100 μ g/ml.	SE Buffers Activity in SE Buffers (% of max)	B 75-100	G 100	O 25-50	W 25-50	75-100
Mox20 I (prototype Bal I) Isolated from Microbacterium oxydans		GG^CCA CC^GGT	E301 E302		000 u.a. 000 u.a.	
Concentration: 10 000 – 30 000 units/ml Assayed on λ DNA (dcm-) Reagents Supplied with Enzyme: 10×SE Buffer O Reaction conditions: 1×SE Buffer O Incubate at 37°C. Blocked by overlapping dcm-methylation (C ^m CWGG): TGGCCAGG.	Storage buffer: 10 mM Tris-HCl 200 mM KCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg/50% glycerol. Store at -20°C. Diluent: SE Buffer A Heat inactivation: No (80° C for	ml BSA;	Ligation/recutting assay: After 20-fold overdigestion with Mox20 I, 80% of the DNA fragments can be ligated and recut. In the presence of 10% PEG ligation is better. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 40 units of Mox20 I			
Qualified for human genome studies: http://s	SE Buffers Activity in SE Buffers (% of max) science.sibenzyme.com/article8 arti	B 10-25 cle 31 1.pht	for 16 hour G 25-50 ml	rs O 100	W 75-100	Y 25-50
MroN I (prototype Nae I)	G	·	E087		500 u.a.	
Isolated from Micrococcus roseus NO Concentration: 2 000 –10 000 units/ml Assayed on Adenovirus-2 DNA Reagents Supplied with Enzyme: 10×SE Buffer B Reaction conditions: 1×SE Buffer B Incubate at 37°C. MroNI is a neoschizomer of NaeI.	Storage buffer: 10 mM Tris-HCl 250 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg/50% glycerol. Store at -20°C. Diluent: SE Buffer A Heat inactivation: No (65°C for	ml BSA;	E088 Ligation/r overdigesti > 90% of be ligated a Overdiges activity wa 1 μg of Ad I for 16 ho	recutting a ion with M the Ad-2 I and recut. ation assa as detected	roN I, DNA frag y: No n after inc	ments can
	SE Buffers Activity in SE Buffers (% of max)	B 100	G 50-75	O 10-25	W 0-10	Y 10-25
MroX I (prototype Xmn I) Isolated from Micrococcus roseus X	I W H III	N^NNTTC NNAAG	E249 E250		200 u.a. 000 u.a.	
Concentration: 5 000 - 15 000 units/ml Assayed on λ DNA Reagents Supplied with Enzyme: 10×SE Buffer W Reaction mixture: 1×SE Buffer W Incubate at 37°C.	Storage buffer: 10 mM Tris-HCl 200 mM NaCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg/50% glycerol. Store at -20°C. Diluent: SE Buffer A Heat inactivation: Yes (65° C for	ml BSA;	Ligation/r overdigesti DNA fragr Overdiges activity wa 1 µg of λ for 16 hour	ion with Ments can be stion assaged as detected DNA with	MroX I, 5 be ligated y: No n after inc	0% of the and recut onspecificular on one of the one of
	SE Buffers Activity in SE Buffers (% of max)	B 50-75	G 50-75	0	W	Y 25-50

MSP I (prototype Hpa II)

Isolated from Moraxella species

Concentration: 10 000 - 20 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1×SE Buffer B

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA;

50% glycerol. Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

Activity in SE Buffers (% of max)

MGQ

Yes (65° C for 20 minutes)

1 μg of DNA with 20 units of Msp I for 16 hours.

C^CGG

GGC^C

E091

E092

E191

E192

I for 16 hours.

E175

E176

W G 75-100 50-75 75-100 75-100

1000 u.a.

5000 u.a.

Ligation/recutting assay: After 10-fold

overdigestion with Msp I, 95% of the

DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific

activity was detected after incubation of

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 27 1.phtml

SE Buffers

Msp20 I (prototype Bal I) Isolated from Micrococcus species 20

Replaced by Mox20 I

TGG^CCA ACC^GGT

CMG^CKG

GKC^GMC

100

MspA1 I (prototype NspB II)

Isolated from Moraxella species A1 Concentration: 5 000 - 10 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction conditions: 1× SE BufferY + BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1x reaction mix to a final

concentration of 100 µg/ml.

Storage buffer: 20 mM Tris-HCl (pH 7.6): 300 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 10 mM MgCl₂,

200 μg/ml BSA, 50% glycerol. Store at -20°C (*see note). Diluent: SE Buffer A

Heat inactivation: Yes (65° C for 20 minutes)

2500 u.a. Ligation/recutting assay: After 10-fold overdigestion with MspA1 I, 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of MspA1

500 u.a.

Do not use BSA for long incubation *Note: Store For long term storage (more than 30 days), store at -70°C.

SE Buffers В G 0 10-25 75-100 25-50 100 Activity in SE Buffers (% of max) 10-25

CC^NGG

GGN^CC

MspR9 I (prototype ScrF I) Isolated from Moraxella species R9

Concentration: 10 000 - 20 000 units/ml

Assaved on \(DNA \) (dcm-) Reagents Supplied with Enzyme:

10×SE Buffer O

Reaction conditions: 1×SE Buffer O

Incubate at 37°C.

Blocked by overlapping *dcm*-methylation

(C^mCWGG): CCWGG.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoetyanol; 100 μg/ml BSA;

50% glycerol. Store at -20°C. Diluent: SE Buffer A

Heat Inactivation:

No (65° C for 20 minutes)

Ligation/recutting assay: After 2-fold overdigestion with MspR9 I none of the DNA fragments can be ligated.

1000 u.a.

5000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 30 units of MspR9I

for 16 hours.

SE Buffers Activity in SE Buffers (% of max) 50-75 100 50-75 75-100

TCG^CGA

AGC^GCT

Mte I (prototype Mte I) Isolated from Microbacterium

testaceum 17B

 $G(5mC)G(5mC)^{N}G(5mC)G(5mC)$ $(5mC)G(5mC)GN^{(5mC)}G(5mC)G$ E553 E554

E099

E100

500 u.a. 2500 u.a.

500 u.a.

2500 u.a.

See page 57 for more information about this enzyme.

Nru I (prototype Nru I)

Isolated from Nocardia rubra Concentration: 5 000 - 10 000 units/ml

Assayed on \(DNA (dam-) **Reagents Supplied with Enzyme:**

10×SE Buffer W

Reaction conditions: 1× SE Buffer W

Incubate at 37°C.

Blocked by overlapping dam-methylation

 (G^mATC) : TCGCGATC.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

No (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with Nru I, 20% of the DNA fragments can be ligated. Of these, 90% can be recut. In the presence of 10% PEG ligation is better.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 10 units of Nru I for

16 hours. SE Buffers B W G O Activity in SE Buffers (% of max) 0-10 10-25 75-100 100 10-25

PalA I (prototype Asc I)

Isolated from Pseudomonas alcaligenes BS17

Concentration: 500 – 2 000 units/ml

Assayed on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction condition: 1×SE Buffer Y

Incubate at 37°C.

Blocked by CpG methylation.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM KCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA,

50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 2-fold overdigestion with PalAI,

100 u.a.

500 u.a.

E483

E484

> 90% of the DNA fragments can be

ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 2 units of PalAI for 16 hours.

1000 u.a.

5000 u.a.

300 u.a.

1500 u.a.

overdigestion with Pce I 70% of the

DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific

activity was detected after incubation of

	SE Buffers	В	G	О	W	Y
	Activity in SE Buffers (% of max)	25-50	10-25	0	0	100
-						

GG^CGCCC CCGCGC^GG

AGG^CCT E105 Pce I (prototype Stu I) TCC^GGA E106 Isolated from Planococcus citreus 55 Ligation/recutting assay: After 10-fold

Concentration: 10 000 – 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction Condition: 1xSE Buffer Y

Incubate at 50°C.

Incubation at 37°C results in 50% activity.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 100 µg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

1 μ g of λ DNA with 20 units of Pce I for 16 hours.

Yes (80° C for 20 minutes) SE Buffers В G W Activity in SE Buffers (% of max) 75-100 75-100 50-75 25-50100

E275

E276

E497

E498

A^CATGT

TGTAC^A

Pci I (prototype BspLU11 I)

Isolated from an E.coli strain that carries the cloned Pci I gene from Planococcus citreus SE-

Concentration: 10 000 units/ml

Assayed on T7 DNA

Reagents Supplied with Enzyme:

10×SE Buffer O

Reaction conditions: 1×SE Buffer O

Incubate at 37°C.

Blocked by "ACATGT methylation. Not blocked by AC^mATGT methylation. MGQ

Storage buffer: 10 mM Tris-HCl (pH 7.5);

250 mM NaCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; and 50% glycerol.

Store at -20°C. Diluent: SE Buffer A

Heat Inactivation: Yes (65° C for 20 minutes)

GCTCTTC(N)1^

Ligation/recutting assay: After 10-fold overdigestion with Pci I, 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of T7 DNA with 20 units of Pci I

for 16 hours. SE Buffers G 0W Activity in SE Buffers (% of max) 50-75 75-100 100 75-100 50-75

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

PciS I (prototype Sap I) Isolated from Planococcus citreus S

Concentration: 500 - 2 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1×SE Buffer B

Incubate at 37°C.

CGAGAAG(N)₄^ Storage buffer: 10 mM Tris-HCl (pH 7.5);

50 mM KCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg/ml BSA;

50% glycerol. Store at -20°C. Diluent: SE Buffer A

Heat Inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 3-fold overdigestion with PciS I, 90% of the DNA fragments can be ligated with T4 DNA Ligase at 16°C and 95% of these can be recut.

50 u.a.

250 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 1 units of PciS I for 16 hours.

SE Buffers 0-10 Activity in SE Buffers (% of max) 100 50-75 0-10 75-100

Pcs I (prototype Pcs I) Isolated from Paracoccus carotinifaciens 3K

(5mC)GNNNNN^NN(5mC)G G(5mC)NN^NNNNNG(5mC)

E505 50 u.a. E506 250 u.a.

See page 57 for more information about this enzyme.

Pct I (prototype Bsm I) Isolated from Planococcus citreus SM

Concentration: 10 000 - 40 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer O

Reaction conditions: 1×SE Buffer O

Incubate at 37°C.

MGQ

GAATGCN[^] CTTAC^GN

1000 u.a. E045 E046

5000 u.a.

250 mM NaCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 100 μg/ml BSA; 50% glycerol. Store at -20°C. Diluent: SE Buffer A

Storage buffer: 10 mM Tris-HCl (pH 7.5);

Heat Inactivation: Yes (65° C for 20 minutes) Ligation/recutting assay: After 20-fold overdigestion with Pct I, 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20units of Pct I for 16 hours.

W G O Activity in SE Buffers (% of max) 25-50 50-75 100 75-100 10-25

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8_article_28_1.phtml

SE Buffers

Pkr I (prototype Pkr I) Isolated from Planomicrobium koreense 78k

DNA sequence with at least three 5mC: $G(5mC)N^{G}(5mC)$

 $(5mC)G^N(5mC)G$

E579 E580

50 u.a. 250 u.a.

See page 58 for more information about this enzyme.

Ple19 I (prototype Pvu I) Isolated from Pseudomonas lemoignei 19		CGAT^CG GC^TAGC	E195 E196		100 u.a. 500 u.a.	
Concentration: 2 000 - 5 000 units/ml Assayed on λ DNA (Hind III-digest)	Storage buffer: 10 mM Tris-HCl 100 mM KCl; 0.1 mM EDTA;	(pH 7.5);	Ligation/r overdigesti			
Reagents Supplied with Enzyme:	7 mM 2-mercaptoethanol; 200	μg/ml BSA;				
10×SE Buffer Y	50% glycerol. Store at -20°C.		Overdiges			
Reaction conditions: 1× SE Buffer Y	Diluent: SE Buffer A		activity wa			
Incubate at 37°C.	Heat inactivation:		$1 \mu g \text{ of } \lambda$		h 5 units	of Ple19
Not blocked by overlapping	Yes (65° C for		for 16 hour		117	N/
dam-methylation ($G^{m}ATC$): $C\underline{GATC}G$.	SE Buffers Activity in SE Buffers (% of max)	B 75-100	75-100	O 25-50	W 25-50	100
Pps I (prototype Ple I)	GA	GTC(N) ₄ ^	E269		25 u.a.	
Isolated from Pseudomonas pseudoalcaligenes	СТ	CAG(N)5^	E270		125 u.a.	
Concentration: 500 – 1 000 units/ml	Storage buffer: 10 mM Tris-HCl	(pH 7.5);	Ligation/r	ecutting	assay: A	fter 2-fold
Assayed on λ DNA	50 mM KCl; 0.1 mM EDTA;	d //	overdigesti			
Reagents Supplied with Enzyme:	7 mM 2-mercaptoethanol; 200 μg	DNA fragn				
10×SE Buffer Y, BSA	50% glycerol. Store at -20°C.	Overdiges				
Reaction conditions : 1×SE Buffer Y+BSA	Diluent: SE Buffer A					ubation of
Incubate at 37°C.	Heat Inactivation:	1 μ g of λ DNA with 2 unit of Pps I				
To obtain 100% activity, BSA should be	Yes (65° C for	20 minutes)	 S) 16 hours. Do not use BSA for long incubation 			antion
added to the 1×reaction mix to a final	SE Buffers	В	G	0	W	Y
concentration of 100 μg/ml.	Activity in SE Buffers (% of max)	50-75	10-25	0-10	25-50	100
Psi I (prototype Psi I)		TTA^TAA AAT^ATT	E279 E280		200 u.a. 000 u.a.	
Isolated from <i>Pseudomonas</i> species SE-G49 Concentration: 5 000 - 10 000 units/ml	Storage buffer: 10 mM Tris-HCl				fter 5-fold	
Assayed on λ DNA	200 mM KCl; 0.1 mM EDTA;	Ligation/recutting assay: After 5-fold overdigestion with Psi I, about 50% of				
Reagents Supplied with Enzyme:	7 mM 2-mercaptoethanol; 200 μg	/ml BSA;	the DNA fragments can be ligated. Of these, 95% can be recut.			
10×SE Buffer B	50% glycerol. Store at -20°C.					
Reaction conditions : 1×SE Buffer B	Diluent: SE Buffer A		Overdiges			
Incubate at 37°C.	Heat Inactivation:		activity wa			
	Yes (65° C for	20 minutes)	1 μg of λ DNA with 20 units of Psi I for 16 hours.			
	SE Buffers	В	G	О	W	Y
	Activity in SE Buffers (% of max)	100	25-50	10-25	25-50	75-100
Psp124B I (prototype Sac I) Isolated from Pseudomonas species 124B		GAGCT^C C^TCGAG	E107 E108		000 u.a. 000 u.a.	
Concentration: 10 000 - 30 000 units/ml	Storage buffer: 10 mM Tris-HCl		Ligation/r			ter 20-fold
Assayed on λ DNA (Hind III-digest)	250 mM NaCl; 0,1 mM EDTA;		overdigesti	on with F	sp124B I,	> 90% of
Reagents Supplied with Enzyme:	7 mM 2-mercaptoethanol; 100	μg/ml BSA;	the DNA	fragments	can be 1	igated and
10×SE Buffer G	50% glycerol. Store at -20°C.		recut.			. ~
Reaction mixture: 1×SE Buffer G	Diluent: SE Buffer A		Overdiges			
Incubate at 37°C.	Heat inactivation:	activity wa 1 μg of λ Γ				
	N = ((50 C f = 1		1 112 01 1	JINA WILII	20 umis 0	1 FSp124E
	No (65° C for Vos (80° C for					
	Yes (80° C for	20 minutes)	I for 16 ho	urs.		Y
					W 0-10	Y 75-100
Psp6 I (prototype EcoR II) Isolated from Pseudomonas species 6	Yes (80° C for SE Buffers Activity in SE Buffers (% of max)	20 minutes)	I for 16 ho	O 10-25	W	
Isolated from <i>Pseudomonas</i> species 6 Concentration: 1 000 – 3 000 units/ml	Yes (80° C for SE Buffers Activity in SE Buffers (% of max) Storage buffer: 10 mM Tris-HCl	20 minutes) B 75-100 ^CCWGG GGWCC^	I for 16 hor G 100 E453 E454 Ligation/r	O 10-25	W 0-10 100 u.a. 500 u.a. assay: A	75-100 fter 3-fold
Isolated from <i>Pseudomonas</i> species 6 Concentration: 1 000 – 3 000 units/ml Assayed on λ DNA (dcm-)	Yes (80° C for SE Buffers Activity in SE Buffers (% of max) Storage buffer: 10 mM Tris-HCl 100 mM KCl; 0.1 mM EDTA;	20 minutes) B 75-100 ^CCWGG GGWCC^ (pH 7.5);	I for 16 hor G 100 E453 E454 Ligation/r overdigesti	O 10-25 ecutting on with	W 0-10 100 u.a. 500 u.a. assay: A: Psp6 I, 9	75-100 fter 3-fold 5% of the
Isolated from <i>Pseudomonas</i> species 6 Concentration: 1 000 – 3 000 units/ml Assayed on λ DNA (dcm-) Reagents Supplied with Enzyme:	Yes (80° C for SE Buffers Activity in SE Buffers (% of max) Storage buffer: 10 mM Tris-HCl 100 mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg	20 minutes) B 75-100 ^CCWGG GGWCC^ (pH 7.5);	I for 16 hor G 100 E453 E454 Ligation/r overdigesti DNA fragn	ecutting on with nents can	W 0-10 100 u.a. 500 u.a. assay: A Psp6 I, 9 be ligated	75-100 fter 3-fold 5% of the and recut
Isolated from <i>Pseudomonas</i> species 6 Concentration: 1 000 – 3 000 units/ml Assayed on λ DNA (dcm-) Reagents Supplied with Enzyme: 10×SE Buffer B	Yes (80° C for SE Buffers Activity in SE Buffers (% of max) Storage buffer: 10 mM Tris-HCl 100 mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg 50% glycerol. Store at -20°C.	20 minutes) B 75-100 ^CCWGG GGWCC^ (pH 7.5);	I for 16 hor G 100 E453 E454 Ligation/r overdigesti DNA fragr Overdiges	ecutting on with nents can tion assa	W 0-10 100 u.a. 500 u.a. assay: A: Psp6 I, 9: be ligated by: No n	fter 3-fold 5% of the and recut
Isolated from <i>Pseudomonas</i> species 6 Concentration: 1 000 – 3 000 units/ml Assayed on λ DNA (dcm-) Reagents Supplied with Enzyme:	Yes (80° C for SE Buffers Activity in SE Buffers (% of max) Storage buffer: 10 mM Tris-HCl 100 mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg	20 minutes) B 75-100 ^CCWGG GGWCC^ (pH 7.5);	I for 16 hor G 100 E453 E454 Ligation/r overdigesti DNA fragn	ecutting on with ments can tion assa	W 0-10 100 u.a. 500 u.a. assay: A. Psp6 I, 9. be ligated y: No r. d after inc	75-100 fter 3-fold 5% of the and recut conspecific tubation o

Blocked by overlapping dcm-methylation

(C^mCWGG): <u>CCWGG</u>.

Activity in SE Buffers (% of max)

SE Buffers

No (65° C for 20 minutes)

Yes (80° C for 20 minutes)

100

W

25-50

75-100

10-25

16 hours.

G

50-75

PspC I (prototype PmaC I) CAC^GTG E475 2000 u.a. GTG^CAC E476 10000 u.a. Isolated from *Pseudomonas* species C Storage buffer: 10 mM Tris-HCl (pH 7.5); Concentration: 10 000 - 30 000 units/ml Ligation/recutting assay: After 10-fold 50 mM KCl; 0.1 mM EDTA; overdigestion with PspC I, > 90% of the Assaved on \(\lambda \) DNA **Reagents Supplied with Enzyme:** 10 mM 2-mercaptoethanol; 200 μg/ml BSA; DNA fragments can be ligated and recut. In the presence of 10% PEG ligation is 10×SE Buffer B, BSA 50% glycerol. Store at -20°C (*see note). Diluent: SE Buffer A Reaction conditions: 1×SE Buffer B+BSA Overdigestion assay: No nonspecific **Heat Inactivation:** Incubate at 37°C. activity was detected after incubation of Yes (65° C for 20 minutes) To obtain 100% activity, BSA should be 1 μg of λ DNA with 40 units of PspC I added to the 1×reaction mix to a final for 16 hours. concentration of 100 µg/ml. Do not use BSA for long incubation. *Note: For long term storage (more than 30 days), store at -70°C SE Buffers В O W G Activity in SE Buffers (% of max) 50-75 100 50-75 **G^GTNACC** E169 2000 u.a. PspE I (prototype BstE II) CCANTG^G E170 10000 u.a. Isolated from *Pseudomonas* species E Storage buffer: 10 mM Tris-HCl (pH 7.5); Concentration: 5 000 - 10 000 units/ml Ligation/recutting assay: After 5-fold 50 mM KCl; 0,1 mM EDTA; overdigestion with PspE I Assaved on λ DNA **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 200 µg/ml BSA; >90% of the DNA fragments can be 10×SE Buffer B 50% glycerol. Store at -20°C. ligated and recut. Reaction conditions: 1×SE Buffer B Diluent: SE Buffer A Overdigestion assay: No nonspecific Heat inactivation: activity was detected after incubation of Incubate at 37°C. 1 μg of λ DNA with 10 units of PspE I Yes (65° C for 20 minutes) for 16 hours. Star activity: High enzyme concentration may result in star activity. SE Buffers В 25-50 Activity in SE Buffers (% of max) 100 50-75 50-75 50-75 C^GTACG E223 200 u.a. PspL I (prototype Spl I) GCATG^C E224 1000 u.a. Isolated from Pseudomonas species L **Concentration:** 2 000 – 5 000 units/ml Storage buffer: 10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 2-fold Assayed on λ DNA (HindIII-digest) 100 mM NaCl; 0.1 mM EDTA; overdigestion with PspL I, 95% of the DNA fragments can be ligated and recut. **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 100 µg/ml BSA; Overdigestion assay: No nonspecific 10×SE Buffer Y, BSA 50% glycerol. Store at -20°C. activity was detected after incubation of Reaction conditions: 1×SE Buffer Y+BSA Diluent: SE Buffer A **Heat inactivation:** 1 μ g of λ DNA with 2 units of PspL I for Incubate at 37°C 16 hours. To obtain 100% activity, BSA should be Yes (65° C for 20 minutes) Do not use BSA for long incubation. added to the 1×reaction mix to a final SE Buffers G W concentration of 100 µg/ml. Activity in SE Buffers (% of max) 75-100 75-100 25-50 10-25 100 PspN4 I (prototype Nla IV) **GGN^NCC** E089 1000 u.a. CCN^NGG E090 5000 u.a. Isolated from *Pseudomonas* species N4 Storage buffer: 10 mM Tris-HCl (pH 7.5); Concentration: 10 000 - 20 000 units/ml Ligation/recutting assay: After 10-fold 50 mM KCl; 0,1 mM EDTA; overdigestion with PspN4 I, 95% of the Assayed on λ DNA 7 mM 2-mercaptoethanol; 200 μg/ml BSA; **Reagents Supplied with Enzyme:** DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific 10×SE Buffer Y 50% glycerol. Store at -20°C. activity was detected after incubation of Reaction conditions: 1× SE Buffer Y Diluent: SE Buffer A 1 μ g of λ DNA with 30 units of PspN4 I Heat inactivation: Incubate at 37°C. Yes (65° C for 20 minutes) for 16 hours. Blocked by methylation SE Buffers G О 5'-GGNN(5mC)C-3'/3'-C(5mC)NNGG-5' or. В Activity in SE Buffers (% of max) 10-25 10-25 25-50 5'-GGNN(5mC)C-3'/3'-CCNNGG-5' 10 - 25100 PspOM I (prototype Apa I) G^GGCCC E215 1500 u.a. Isolated from an E.coli strain that carries the CCCGG^G E216 7500 u.a. cloned PspOM I gene from Pseudomonas species OM2164 Concentration: 10 000 units/ml Storage buffer: 20 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 10-fold Assayed on \(\lambda\) DNA (Bam HI-digest) 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT; overdigestion with PspOM I, 95% of the DNA fragments can be ligated and recut. **Reagents Supplied with Enzyme:** 200 μg/ml BSA; 50% glycerol. Store at -20°C. Overdigestion assay: No nonspecific Diluent: SE Buffer A 10×SE Buffer Y **Reaction conditions:** 1×SE Buffer Y **Heat Inactivation:** activity was detected after incubation of 1 μg of λ DNA with 20 units of PspOM Yes (65° C for 20 minutes) Incubate at 37°C I for 16 hours. PspOMI is a neoschizomer of ApaI. SE Buffers Activity in SE Buffers (% of max) 100 75-100 10-25 0-10 0-10

PspPP I (prototype PpuM I)

Isolated from Pseudomonas species PP

Concentration: 2 000 - 5 000 units/ml Assaved on λ DNA (dcm-.HindIII-digest)

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 37°C.

Blocked by overlapping dcm-methylation

(C^mCWGG): **RGGWCCT**GG.

To obtain 100% activity, BSA should be added to the $1 \times reaction$ mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 2-fold overdigestion with PspPP I, >70% of the DNA fragments can be ligated and 80% of these can be recut.

100 u.a. 500 u.a.

E255

E256

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 5 units of PspPP I for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	10-25	10-25	0	0-10	100

Psp X I (prototype PspX I)

Isolated from an E.coli strain that carries the cloned PspX I gene from Pseudomanas species

VC^TCGAGB BGAGCT^CV

RG^GWCCY

YCCWG^GR

E477 200 u.a. E478 1000 u.a.

For high concentration

E478X

G

50-75

E131

E132

Concentration: 10 000 and 50 000 units/ml Assaved on λ DNA (HindIII-digest) Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction conditions: 1×SE Buffer Y+BSA.

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM KCl; 0.1 mM EDTA;

7 mM 2 -mercaptoethanol, 200 μg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

Activity in SE Buffers (% of max)

SE Buffers

No (65° C for 20 minutes) Yes (80° C for 20 minutes)

 $^{\land}(N)_{7}GAAC(N)_{6}TAC(N)_{12}^{\land}$

50-75

Ligation/recutting assay: After 20-fold overdigestion with PspX I, > 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of PspXI for 16 hours.

1000 u.a

W

75-100

100 u.a.

500 u.a.

100

Do not use BSA for long incubation. O

25-50

Psrl (prototype Psr I)

Isolated from Pseudomonas stutzeri N2

Concentration: 1 000 – 3 000units/ml Assayed on T7 DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction mixture: 1×SE Buffer Y+BSA Incubate at 30°C.

Incubation at 37°C results in 20% activity. To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 µg/ml.

 $^{(N)_{12}}CTTG(N)_{6}ATG(N)_{7}$ Storage buffer: 10 mM Tris-HCl (pH 7.5);

50 mM KCl; 0,1 mM EDTA; 7 mM 2-mercaptoethanol; 200 μg/ml BSA,

50% glycerol. Store at -20°C. Diluent: SE Buffer A

Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 2-fold overdigestion with Psr I, > 70% of the DNA fragments can be ligated. Of these, 80% of these can be recut. In the presence of 10% PEG ligation is better. Overdigestion assay: No nonspecific

activity was detected after incubation of 1 μg of T7 DNA with 2 units of Psr I for 16 hours.

Star activity: High enzyme

concentration may result in star activity.

Do not use BSA for long incubation. SE Buffers В Activity in SE Buffers (% of max) 10 - 2510-25 0 - 10100

Pst I (prototype Pst I)

Isolated from an E.coli strain that carries the cloned PstI gene from Providencia stuartii

CTGCA^G **G^ACGTC** E109

4000 u.a. 20000 u.a.

4000 u.a.

20000 u.a.

Concentration: 20 000 and 50 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer O, BSA

Reaction conditions: 1× SE Buffer O+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA;

50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

E110 For high concentration

Ligation/recutting assay: After 20-fold overdigestion with Pst I, > 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of

1 μ g of λ DNA with 40 units of Pst I for 16 hours.

E109X

E110X

Star activity: High enzyme

concentration may result in star activity. Do not use BSA for long incubation.

		20 1100 450			
SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	10-25	25-50	100	25-50	25-50

PstN I (prototype AlwN I)

Isolated from Bacillus sphaericus

Concentration: 5 000 – 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 $\mu g/ml$ BSA;

50% glycerol. Store at -20°C. **Diluent:** SE Buffer A **Heat Inactivation:**

Yes (65° C for 20 minutes)

CAGNNN^CTG

GTC^NNNGAC

Ligation/recutting assay: After 10-fold overdigestion with PstNI > 95% of Lambda DNA fragments can be ligated with T4 DNA Ligase and recut.

500 u.a.

2500 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of PstNI for 16 hours at 37°C.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	50-75	10-25	25-50	100

E571

E572

Pvu II (prototype Pvu II)

Isolated from an *E.coli* strain that carries the cloned Pvu II gene from *Proteus vulgaris*

Concentration: 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with enzyme:

10×SE Buffer G, BSA

Reaction conditions: $1 \times SE$ Buffer G+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of 100 μ g/ml.

MGQ

GTC^GAC

CAG^CTG

E111 2000 u.a. E112 10000 u.a.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 300 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 100 μg/ml BSA; 50% glycerol.

Store at -20°C. **Diluent:** SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Pvu II, 70% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of Pvu II for 16 hours.

Star activity: High enzyme

E491

E492

E529

E530

concentration may result in star activity. **Do not use** BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	100	25-50	25-50	25-50

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

Rga I (prototype Sgf I)

Isolated from *Rhizoblum galegae*Concentration: 5 000 - 10 000 units/ml

Assayed on Ad2 DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 55°C.

Not blocked by overlapping

dam-methylation (G^mATC): GCGATCGC.

GCGAT^CGC CGC^TAGCG

Storage buffer: 10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0.1 mM EDTA;

 $7~\mathrm{mM}$ 2-mercaptoethanol; 50% glycerol.

Store at -20°C. **Diluent:** SE Buffer A **Heat Inactivation:**

No (65° C for 20 minutes) Yes (80° C for 20 minutes)

GGCCGG^CC

CC^GGCCGG

Ligation/recutting assay: After 5-fold overdigestion with Rga I,

200 u.a.

1000 u.a.

> 90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 µg of Ad2 DNA with 10 units of Rga I for 16 hours.

Star activity: High enzyme

concentration may result in star activity.

SE Buffers	В	G	О	W	Y	
Activity in SE Buffers (% of max)	75-100	50-75	10-25	25-50	100	

Rig I (prototype Fse I) Isolated from Rhizobium yangligense

Concentration: 1 000 - 5 000 units/ml Assayed on Adenovirus-2 DNA Reagents Supplied with Enzyme: 10×SE Buffer RigI, BSA

Reaction conditions: 1×SE Buffer RigI+BSA Incubate at 37°C.

Blocked by mCG or GmC methylation: 5'-GGC(m5C)GGCC-3'/3'-CCGG(m5C)CGG-5' or 5'-GG(m5C)CGG(m5C)C-3'/ 3'-C(m5C)GGC(m5C)GG-5'

To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 μg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM KCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA,

50% glycerol.

Store at -20°C(*see note)

Diluent: SE Buffer A

Heat Inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with Rig I,

100 u.a.

500 u.a.

> 95% of Ad2 DNA fragments can be ligated with T4 DNA Ligase and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of $1 \mu g$ of Ad2 DNA with 6 units of Rig I for 16 hours.

Do not use BSA for long incubation.

*Note: For long term storage (more than 7 days), store at -70°C.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	75-100	50-75	0-10	10-25	50-75

RSa I (prototype Rsa I)

Isolated from Rhodopseudomonas sphaeroides

Concentration: 10 000 - 30 000 units/ml Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1× SE Buffer B

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 100 μg/ml BSA,

50% glycerol. Store at -20°C.

Activity in SE Buffers (% of max)

Diluent: SE Buffer A **Heat inactivation:**

MGQ

No (80° C for 20 minutes)

GT^AC

CA[^]TG

B

100

G^TAC

CAT^G

Ligation/recutting assay: After 20-fold overdigestion with Rsa I,

1000 u.a.

5000 u.a.

> 90% of the DNA fragments can be

ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 40 units of Rsa I for 16 hours.

O G 50-75 0 - 1050-75 75-100

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8_article_28_1.phtml

SE Buffers

RsaN I (prototype Rsa I)

Isolated from Rhodopseudomonas sphaeroides N Concentration: 5 000 units/ml

Assayed on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1× SE Buffer B

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 250 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 100 μg/ml BSA,

50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

Yes (80° C for 20 minutes)

CG^GWCCG

Ligation/recutting assay: After 5-fold overdigestion with RsaN I,

200 u.a.

1000 u.a.

> 90% of λ DNA fragments can be ligated with T4 DNA Ligase and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of RsaN I

for 16 hours

E281

E282

E115

E116

16 hours.

E101

E102

E555

E556

E113

E114

SE Buffers O Activity in SE Buffers (% of max) 100 75-100 50-75 50-75 75-100

Rsr2 I (prototype Rsr II) Isolated from Rhodobacter sphaeroides 12

Concentration: 10 000 - 30 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y. BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 µg/ml.

GCCWG^GC Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 100 µg/ml BSA,

50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Rsr2 I,

1000 u.a.

5000 u.a.

> 90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 60 units of Rsr2 I for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	75-100	0-10	10-25	100

G^TCGAC

CAGCT^G

Sal I (prototype Sal I)

Isolated from an E.coli strain that carries the cloned Sal I gene from Streptomyces albus Concentration: 10 000 units/ml

Assaved on λ DNA (Hind III-digest) **Reagents Supplied with Enzyme:**

10×SE Buffer O

Reaction conditions: 1× SE Buffer O

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA;

50% glycerol. Store at -20°C.

Diluent: SE Buffer A

Heat inactivation:

Yes (65° C for 20 minutes)

CCTGCA^GG

GG^ACGTCC

Ligation/recutting assay: After 10-fold overdigestion with Sal I, 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Sal 1 for

2000 u.a.

10000 u.a.

Star activity: High enzyme

concentration may result in star activity.

SE Buffers В G W Activity in SE Buffers (% of max) 0-10 10 - 25100 25-50 0-10

Sbf I (prototype Sse8387 I) Isolated from Streptomyces species Bf61

Concentration: 5 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.6);

Store at -20°C.

Diluent: SE Buffer A

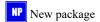
Heat Inactivation:

50 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 200 μg/ml BSA; 50% glycerol.

No (65° C for 20 minutes) Yes (80° C for 20 minutes) Ligation/recutting assay: After 5-fold overdigestion with Sbf I, > 90% of the DNA fragments can be ligated. Of these, 90% can be recut.

200 u.a.

1000 u.a.


Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 10 units of Sbf I for 16 hours.

Star activity: High enzyme

		concentrati	on may re	suit iii stai	activity.
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	50-75	0-10	0-10	100

New product

Mammalian Genome Qualified

Set I (prototype Set I)

Isolated from an *E.coli* strain that carries the cloned Set I gene from *Streptomyces werraensis*

ASST^
^TSSA

E537 E538 200 u.a. 1000 u.a.

For high concentration

E538X 1000 u.a.

Set I is a restriction endonuclease with 4 expected recognition sites as well as relaxed non-cognate sites (star sites).

Concentration: 5 000 and 20 000 units/ml
One unit is defined as the amount of enzyme required to cleave 1 pmol of the double-stranded oligonucleotide with the following structure

5'-CGAGTTTATAGCTGGGCCCAAC-3'
3'-GCTCAAATATCGACCCGGGTTG-5'
in 1 hour at 50°C in a total reaction volume of

Reagents Supplied with Enzyme:

10×SE Buffer Y

 $\textbf{Reaction conditions: } 1{\times}SE \ Buffer \ Y$

Incubate at 55°C.

Storage buffer: 10 mM Tris-HCl (pH 7.6); 100 mM NaCl; 0.1 mM EDTA; 1mM DTT, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat Inactivation:**

No (65° C for 20 minutes) **Yes** (80° C for 20 minutes) **Ligation/recutting assay:** After 5-fold overdigestion with Set I, 50% of the pBR322 DNA fragments can be ligated with T4 DNA Ligase and recut.

Note! In the case of long incubation with Set I DNA can be digested to small plicas

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	25-50	75-100	75-100	100

SfaN I (prototype SfaN I)

Isolated from an *E.coli* strain that carries the cloned SfaN I gene from *Streptococcus faecalis* N

Concentration: 10 000 units/ml Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer O

Reaction conditions: 1× SE Buffer O

Incubate at 37°C.

MGQ

GCATC(N)₅[^] CGTAG(N)₉[^]

10 - 25

E165 E166

500 u.a. 2500 u.a.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 300 mM NaCl; 0,1 mM EDTA; 1 mM DTT; 200 µg/ml BSA; 50% glycerol.

Store at -20°C. **Diluent:** SE Buffer A **Heat inactivation:**

Activity in SE Buffers (% of max)

No (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with SfaN I, > 95% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 10 units of SfaN I

 for 16 hours.

 G
 O
 W
 Y

 25-50
 100
 75-100
 0-10

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8_article_28_1.phtml

SE Buffers

Sfi I (prototype Sfi I)

Isolated from an *E.coli* strain that carries the cloned SfiI gene from *Streptomyces fimbriatus*

GGCCNNNN^NGGCC CCGGN^NNNNCCGG E123 1000 u.a. E124 5000 u.a.

For high concentration

E123X 1000 u.a. E124X 5000 u.a.

Concentration: 10 000 and 40 000 units/ml

Assayed on T7 DNA

Reagents Supplied with Enzyme:

10×SE Buffer G, BSA

Reaction conditions: 1×SE Buffer G+BSA

Incubate at 50°C.

Blocked by overlapping *dcm*-methylation (C^mCWGG): **GGCCWGGNNGGCC**.

Not blocked by overlapping

dcm-methylation

(C^mCWGG): GGCCNNNNNGGCCWGG.

To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of $100 \mu g/ml$.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA, 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation**:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Sfi I, about 70% of the DNA fragments can be ligated and recut. In the presence of 10% PEG ligation is better.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 µg of T7 DNA with 20 units of Sfi I for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	100	25-50	25-50	25-50

C^TCGAG

GAGCT^C

Sfr274 I (prototype Xho I) Isolated from Streptomyces fradiae 274

Concentration: 10 000 – 30 000 units/ml Assayed on λ DNA (Hind III-digest) Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1×SE Buffer B

Incubate at 50°C.

Note: At 37°C activity is about 70% from

maximum.

Blocked by CTCG^mAG methylation. **Not blocked** by CT ^mCGAG methylation.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0.1 mM EDTA;

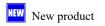
7 mM 2-mercaptoethanol; 200 $\mu g/ml$ BSA;

50% glycerol. Store at -20°C. **Diluent:** SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

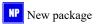
Ligation/recutting assay: After 20-fold overdigestion with Sfr274 I, 90% of the DNA fragments can be ligated and recut. **Overdigestion assay:** No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of Sfr274 I for 16 hours.

2000 u.a.


10000 u.a.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	100	75-100	50-75	50-75	75-100

E125


E126

CCGC^GG E127 1000 u.a. Sfr303 I (prototype Sac II) GG^CGCC E128 5000 u.a. Isolated from Streptomyces fradiae 303 Storage buffer: 10 mM Tris-HCl (pH 7.5); Concentration: 5 000 – 20 000 units/ml Ligation/recutting assay: After 10-fold 100 mM NaCl; 0.1 mM EDTA; overdigestion with Sfr303 I, Assaved on λ DNA **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 200 µg/ml BSA; > 90% of the DNA fragments can be 50% glycerol. Store at -20°C. ligated and recut. 10×SE Buffer B Diluent: SE Buffer A Overdigestion assay: No nonspecific **Reaction conditions:** 1×SE Buffer B activity was detected after incubation of **Heat inactivation:** Incubate at 37°C. Yes (65° C for 20 minutes) 1 μg of λ DNA with 20 units of Sfr303 I for 16 hours. SE Buffers В O W G Activity in SE Buffers (% of max) 100 50-75 10 - 2510-25 75-100 Sma I (prototype Sma I) CCC^GGG E177 2000 u.a. Isolated from an E.coli strain that carries the GGG^CCC E178 10000 u.a. cloned Sma I gene from Serratia marcescens Concentration: 20 000 units/ml Storage buffer: 10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 20-fold Assayed on λ DNA (Hind III-digest) 50 mM NaCl: 0.1 mM EDTA: overdigestion with Sma I. **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 200 µg/ml BSA, > 90% of the DNA fragments can be 10×SE Buffer Y 50% glycerol. Store at -20°C. ligated by high concentration T4 DNA Ligase and 10% PEG, and recut. Diluent: SE Buffer A **Reaction conditions:** 1× SE Buffer Y **Heat inactivation:** Overdigestion assay: No nonspecific Incubate at 25°C. Yes (65° C for 20 minutes) activity was detected after incubation of 1 μg of λ DNA with 40 units of Sma I for 16 hours SE Buffers В G Activity in SE Buffers (% of max) 0-10 0-10 0-10 0-10 100 ATTT^AAAAT E225 1000 u.a. Smi I (prototype Swa I) 5000 u.a. TAAA^TTTA E226 Isolated from Streptococcus milleri S Concentration: 10 000 - 30 000 units/ml Storage buffer: 10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 5-fold Assaved on T7 DNA (Ssp I-digest) 250 mM NaCl; 0.1 mM EDTA; overdigestion with Smi I, about 80% of **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 100 μg/ml BSA; the DNA fragments can be ligated and recut. In the presence of 10% PEG 10×SE Buffer O, BSA 50% glycerol. Store at -20°C. Reaction conditions: 1×SE Buffer O+BSA ligation is better. Diluent: SE Buffer A **Heat inactivation:** Overdigestion assay: No nonspecific Incubate at 37°C activity was detected after incubation of To obtain 100% activity, BSA should be Yes (65° C for 20 minutes) $1~\mu g$ of T7 DNA with 30 units of Smi I added to the 1×reaction mix to a final for 16 hours. concentration of 100 µg/ml. Do not use BSA for long incubation. SE Buffers B G O W Activity in SE Buffers (% of max) 25-50 25-50 100 75-100 25-50 SmiM I (prototype Msl I) **CAYNN^NNRTG** E293 500 u.a. **GTRNN^NNYAC** E294 2500 u.a. Isolated from Sphingobacterium mizutae M Concentration: 5 000 - 10 000 units/ml Storage buffer: 10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 5-fold 250 mM NaCl; 0,1 mM EDTA; overdigestion with SmiM I, 90% of the Assaved on \(\lambda \) DNA **Reagents Supplied with Enzyme:** 7 mM 2-mercaptoethanol; 200 µg/ml BSA; DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific 10×SE Buffer W and 50% glycerol. Store at -20°C. activity was detected after incubation of Diluent: SE Buffer A Reaction conditions: 1×SE Buffer W 1 ug of DNA with 20 units of SmiM I **Heat Inactivation:** Incubate at 37°C. for 16 hours. Yes (65° C for 20 minutes) SE Buffers G Activity in SE Buffers (% of max) 75-100 10-25 10-25 10-25 Sph I (prototype Sph I) 500 u.a. GCATG^C E129 Isolated from an E.coli strain that carries the C^GTACG E130 2500 u.a. cloned SphI from Streptomyces gene phaeochromogenes Concentration: 5 000 units/ml Storage buffer: 10 mM Tris-HCl (pH 7.5); Ligation/recutting assay: After 10-fold 100 mM NaCl; 0,1 mM EDTA; 1 mM DTT; overdigestion with Sph I, 90% of the Assayed on \(\lambda \) DNA DNA fragments can be ligated and recut. **Reagents Supplied with Enzyme:** 100 μg/ml BSA; 50% glycerol. 10×SE Buffer G, BSA Store at -20°C. Overdigestion assay: No nonspecific activity was detected after incubation of Reaction conditions: 1×SE Buffer G+BSA Diluent: SE Buffer A 1 μ g of λ DNA with 10 units of Sph I for Heat inactivation: Incubate at 37°C. 16 hours. Yes (65° C for 20 minutes) To obtain 100% activity, BSA should be Do not use BSA for long incubation. added to the 1×reaction mix to a final SE Buffers В G 0 concentration of 100 µg/ml.

Activity in SE Buffers (% of max)

100

75-100

75-100

50-75

25-50

Sse9 I (prototype Tsp509 I)

Isolated from an E.coli strain that carries the cloned Sse9I gene from Sporosarcina species 9

Concentration: 5 000 units/ml Assayed on pBR322 DNA

Reagents Supplied with Enzyme:

10×SE Buffer B, BSA

Reaction conditions: 1×SE Buffer B+BSA

Incubate at 55°C.

Incubation at 37°C results in 75% activity. To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 µg/ml.

E217 E218

500 u.a. 2500 u.a.

Storage buffer: 10 mM Tis-HCl (pH 7.5); 50 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 200 μ g/ml BSA; 50% glycerol. Store at -20°

Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 5-fold overdigestion with Sse9 I,

> 95% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 5 units of Sse9 I for 16 hours.

Do not use BSA for long incubation.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	100	75-100	50-75	50-75	75-100

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

Ssp I (prototype Ssp I)	AAT^ATT	E041	500 u.a.
Isolated from an E.coli strain that carries the	TTA^TAA	E042	2500 u.a.
cloned SspI gene from Sphaerotilus species			

Concentration: 10 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer K, BSA

Reaction conditions: 1×SE Buffer K+BSA

Incubate at 37°C.

Blocked by A^mATATT methylation. To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0,1 mM EDTA; 1 mM DTT; 200 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with SspI 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 20 units of Ssp I for 16 hours.

Star activity: High enzyme concentration may result in star activity. Do not use BSA for long incubation.

100 u.a.

500 u.a.

50-75

2000 u.a.

10000 u.a.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	50-75	25-50	50-75	75-100

C^TAG

GAT^C

SSPM I (prototype Mae I) Isolated from Sporosarcina species M

Concentration: 1 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 55°C.

At 37°C activity is 75% from maximum.

Storage buffer: 20 mM Tris-HCl (pH 7.6); 100 mM KCl; 0,1 mM EDTA;

0,01%Triton X-100; 500 µg/ml BSA; 7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

NEW

DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 2 units of SspM I

Ligation/recutting assay: After 3-fold

overdigestion with SspMI 5% of the

for 16 hours.

E133

E134

E591

E592

No (80° C for 20 minutes) *Note: For long term storage (more than 30 days), store at -70°C 50-75 25-50 100

10 - 25

Taq I (prototype Taq I) Isolated from an E.coli strain that carries the cloned Taq I gene from Thermus aquaticus

Concentration: 20 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 65°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

MGQ

SE Buffers

AGC^T Storage buffer: 10 mM Tris-HCl (pH 7.5); 300 mM NaCl; 0,1 mM EDTA; 1 mM DTT;

T^CGA

200 μg/ml BSA; 50% glycerol. Store at -20°C.

Activity in SE Buffers (% of max)

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Tag I, > 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific

activity was detected after incubation of 1 μ g of λ DNA with 20 units of Tag I for

16 hours.

Do not use RSA for long incubation

		20 1100 4100			
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	75-100	75-100	50-75	100

Oualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

Tru9 I (prototype Mse I)

Isolated from an E.coli strain that carries the cloned Tru9 I gene from Thermus ruber 9

Concentration: 20 000 units/ml

Assayed on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer W

Reaction conditions: 1×SE Buffer W

Incubate at 65°C.

Blocked by TTA^mA methylation.

E199 E200

500 u.a. 2500 u.a.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT;

200 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

Yes (80° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Tru9 I,

> 95% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 40 units of Tru9 I for 16 hours.

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	25-50	25-50	100	50-75

Qualified for mammalian genome studies: http://science.sibenzyme.com/article8 article 28 1.phtml

TseF I (prototype Tsp45 I)

Isolated from an E.coli strain that carries the cloned TseF I gene from Thermus species F35

Concentration: 5 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1×SE Buffer B

Incubate at 65°C.

NEW

SE Buffers

^GTSAC E589 CASTG^ E590

E097

E098

Storage buffer: 10 mM Tris-HCl (pH 7.6); 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT;

200 µg/ml BSA; 50% glycerol. Store at -20°C.

Activity in SE Buffers (% of max)

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with TseF I,

200 e.a.

1000 e.a.

about 95% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 5 units of TseFI for

16 hours. 50-75 25-50 50-75 0-10

Tth111 I (prototype Tth111 I)

Isolated from an E.coli strain that carries the cloned Tth111 I gene from Thermus thermophilus

Concentration: 5 000 units/ml Assaved on λ DNA (HindIII-digest) **Reagents Supplied with Enzyme:**

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 65°C.

GACN^NNGTC CTGNN^NCAG

100

Storage buffer: 10 mM Tris-HCl (pH 7.5); 500 mM NaCl; 0,1 mM EDTA; 1 mM DTT;

50% glycerol. Store at -20°C.

Diluent: SE Buffer A Heat inactivation:

No (65° C for 20 minutes)

Ligation/recutting assay: After 2-fold overdigestion with Tth111 I, about 10% of the DNA fragments can be ligated and

400 u.a.

2000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of λ DNA with 5 units of Tth111 I for 16 hours.

Star activity: Long incubation or conditions of high enzyme concentration may result in star activity. Star activity is observed at a greater than 5-fold overdigestion of 1 µg substrate with Tth111I for 1 hour.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	75-100	50-75	10-25	10-25	100

G^TGCAC

CACGT^G

Vne I (prototype ApaL I)

Isolated from an E.coli strain that carries the cloned VneI gene from Vibrio nereis 18

Concentration: 10 000 - 20 000 units/ml

Assaved on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer O

Reaction conditions: 1× SE Buffer O

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA;

50% glycerol. Store at -20°C. Diluent: SE Buffer A

Heat inactivation:

1000 u.a. E137 E138 5000 u.a.

Ligation/recutting assay: After 10-fold overdigestion with Vne I, 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of Vne I

Yes (65° C for	101 10 Hour	. 5.			
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	10-25	25-50	100	25-50	25-50

VSP I (prototype Vsp I)

Isolated from an E.coli strain that carries the cloned Vsp I gene from Vibrio species 343

Concentration: 10 000 units/ml

Assayed on λ DNA

Reagents Supplied with Buffer:

10×SE Buffer W

Reaction conditions: 1×SE Buffer W

Incubate at 37°C.

Blocked by ATTA^mAT methylation.

E139 E140 1000 u.a. 5000 u.a.

Storage buffer: 10 mM Tris HCl (pH 7.6); 50 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 200 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A Heat inactivation:

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Vsp I, 70% of the DNA fragments can be ligated. Of these, 90% can be recut. In the presence of 10% PEG ligation is better.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of Vsp I for 16 hours.

		101 10 110 111			
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	0-10	10-25	50-75	100	25-50

Oualified for mammalian genome studies: http://science.sibenzyme.com/article8_article_28_1.phtml

Xba I (prototype Xba I)

Isolated from an E.coli strain that carries the cloned Xba I gene from Xanthomonas badrii

T^CTAGA AGATC^T

E141 2000 u.a. E142 10000 u.a.

For high concentration

E141X 2000 u.a. 10000 u.a. E142X

Concentration:

20 000 and 50 000 units/ml

Assaved on λ DNA (dam-/ Hind III-digest) Reagents Supplied with Enzyme:

10×SE Buffer O, BSA

Reaction conditions: 1×SE Buffer O+BSA

Incubate at 37°C.

Blocked by overlapping dam-methylation

(GMATC): TCTAGATC.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0,1 mM EDTA; 1 mM DTT;-200 μg/ml BSA; 50% glycerol.

Store at -20°C. Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 20-fold overdigestion with Xba I, > 90% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μg of DNA with 40 units of Xba I for

Do not use BSA for long incubation.

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	75-100	75-100	100	50-75	75-100

E233

E234

E463

E464

C^CCGGG

GGGCC^C

Qualified for human genome studies: http://science.sibenzyme.com/article8 article 31 1.phtml

Xma I (prototype Xma I)

Isolated from an E.coli strain that carries the cloned gene malvacearum

Concentration: 3000 units/ml Assayed on Adenovirus-2 DNA **Reagents Supplied with Enzyme:**

10×SE Buffer Y

Reaction conditions: 1×SE Buffer Y

Incubate at 37°C.

Storage buffer: 20 mM Tris-HCl (pH 7.6); 50 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 200 μ g/ml BSA; 50% glycerol. Store at -20°

Diluent: SE Buffer A **Heat inactivation:**

Ligation/recutting assay: After 3-fold overdigestion with XmaI, 95% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 3 units of Xma I for 16 hours.

300 u.a.

1500 u.a.

Yes (65° C for 20 minutes) SE Buffers O G Activity in SE Buffers (% of max) 75-100 50-75 0-10 100

GAC^GTC

CTG^CAG

Zra I (prototype Aat II)

Isolated from an E.coli strain that carries the cloned Zra I gene from Zoogloea ramigera11

Concentration: 10 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer B

Reaction conditions: 1×SE Buffer B

Incubate at 37°C.

ZraI is a neoschizomer of AatII.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM NaCl; 0.1 mM EDTA; 1 mM DTT;

 $200 \mu g/ml$ BSA; 50% glycerol. Store at -20°

C. Diluent: SE Buffer A **Heat Inactivation:**

No (65° C for 20 minutes) Yes (80° C for 20 minutes) Ligation/recutting assay: After 10-fold overdigestion with Zra I, about 90% of the DNA fragments can be ligated and recut. In the presence of 10% PEG ligation is better.

200 u.a.

1000 u.a.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 10 units of Zra I for 16 hours.

Star activity: High enzyme concentration results in star activity.

SE Buffers B Activity in SE Buffers (% of max) 100 50-75 25-50 25-50 75 - 100

Zrm I (prototype Sca I)

Isolated from Zoogloea ramigera SCA

Concentration: 10 000 – 20 000 units/ml

Assaved on λ DNA

Reagents Supplied with Enzyme:

10×SE Buffer Y, BSA

Reaction conditions: 1×SE Buffer Y+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1×reaction mix to a final concentration of 100 µg/ml.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 50 mM KCl; 0,1 mM EDTA;

7 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

AGT^ACT

TCA^TGA

Ligation/recutting assay: After 10-fold overdigestion with Zrm I, 70% of the DNA fragments can be ligated and recut. Overdigestion assay: No nonspecific

1000 u.a.

5000 u.a.

activity was detected after incubation of 1 μ g of λ DNA with 20 units of Zrm I for 16 hours.

Do not use BSA for long incubation.

E005

E006

E145

E146

SE Buffers Activity in SE Buffers (% of max) 50-75 25-50 0-10 0-10 100

ATGCA[^]T

Zsp2 I (prototype Ava III)

Isolated from Zoogloea species 2

Concentration: 5 000 – 20 000 units/ml

Assayed on \(\lambda \) DNA

Reagents Supplied with Enzyme:

10×SE Buffer B, BSA

Reaction conditions: 1×SE Buffer B+BSA

Incubate at 37°C.

To obtain 100% activity, BSA should be added to the 1× reaction mix to a final concentration of 100 µg/ml.

T^ACGTA Storage buffer: 10 mM Tis-HCl (pH 7.5);

200 mM KCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 µg/ml BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

Yes (65° C for 20 minutes)

Ligation/recutting assay: After 10-fold overdigestion with Zsp2 I,

1000 u.a.

5000 u.a.

> 90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of λ DNA with 20 units of Zsp2 I for 16 hours.

Do not use BSA for long incubation

		Do not use	BBITTOI	rong meac	oution.
SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	100	50-75	25-50	25-50	25-50

50

Nickases

Nicking Endonuclease N.Bst9 I GAGTCNNNN^NN E401 100 u.a. Isolated from Bacillus stearothermophilus T9 Concentration: 2 000 = 5 000 units/ml Storage buffer: 10 mM Tis-HCl (pH 7 5): Ligation/recutting a

Concentration: 2 000 – 5 000 units/ml **Assayed on** T7 DNA

Reagents Supplied with Enzyme:

10×SE Buffer N.Bst9I

Reaction conditions: $1\times SE$ Buffer N.Bst9 I

Incubate at 55°C.

Incubation at 37°C results in 20% activity.

Storage buffer: 10 mM Tis-HCl (pH 7.5); 50 mM KCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 $\mu g/ml$ BSA; 50% glycerol. Store at -20°C.

Diluent: SE Buffer A **Heat inactivation:**

No (65° C for 20 minutes) **Yes** (80° C for 20 minutes) **Ligation/recutting assay:** After 5-fold overdigestion with N.Bst9 I, 90% of the DNA fragments can be ligated and recut.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 μ g of T7 DNA with 2 units of N.Bst91 for 16 hours.

Star activity: High enzyme concentration results in star activity.

 SE Buffers
 B
 G
 O
 W
 Y

 Activity in SE Buffers (% of max)
 10-25
 75-100
 100
 100
 50-75

Methyl-directed DNA endonucleases

AOX I (prototype Aox I)

Isolated from Arthrobacter oxydans 25K

^PuG(5mC)Py Py(5mC)GPu^ E569 E570 50 u.a. 250 u.a.

Overdigestion assay: No detectable degradation of 1μg of Lambda DNA was observed after incubation with 1 units of enzyme for 16 hours at 60°C in a total reaction volume of 50 μl.

The enzyme cleaves C5-methylated DNA and doesn't cut unmodified DNA!

Concentration: 500 units/ml

Assayed on DNA pMHaeIII/DriI is a linearized plasmid pMHaeIII. pMHaeIII carries a gene of DNA-methyltransferase M.HaeIII, which methylates sites 5'-GGCC-3' producing 5'-GG(5mC)C-3'/3'-C(5mC)GG-5'.

One unit is defined as the amount of enzyme required to hydrolyze in 1 μg of linearized

plasmid pMHaeIII/DriI in 1 hour at 60°C in a total reaction volume of 50 μl.

Reagents Supplied with Enzyme: 10×SE Buffer AoxI

Reaction conditions: 1× SE Buffer AoxI

Incubate at 60°C.

Storage buffer: 10 mM Tris-HCl (pH 7.4); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C.

Heat inactivation:

No (80° C for 20 minutes)

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	25-50	10-25	25-50	75-100

Bis I (prototype Bis I) Isolated from Bacillus subtilis T30	G(5mC)^NGC CGN^(5mC)G		40 u.a. 200 u.a.	
---	--------------------------	--	---------------------	--

The enzyme cleaves only C5-methylated DNA and doesn't cut unmodified DNA! [1]

Concentration: 1 000 – 2 000 units/ml

Assayed on Double-stranded oligonucleotide 5' GCTTGTACTTTA G(5mC)G G C ATTGATTCTCACCACG 3' 3' CGAACATGAAAT C G C(5mC)G TAACTAAGAGTGGTGC 5'

One unit is defined as the amount of enzyme required to cleave 1 pmol of the double-stranded oligonucleotide with the following structure

5' GCTTGTACTTTA <u>G(5mC)G</u> <u>G</u> <u>C</u>ATTGATTCTCACCACG 3' 3' CGAACATGAAAT<u>C</u> <u>G</u> <u>C(5mC)G</u>TAACTAAGAGTGGTGC 5'

in 1 hour at 37°C in a total reaction volume of 20 μl. **Reagents Supplied with Enzyme:** 10×SE Buffer BisI

Reaction conditions: 1× SE Buffer BisI

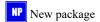
Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C.

Overdigestion assay: No nonspecific activity was detected after incubation of 1 µg of pFsp4HI1 DNA (BamHI digest) with 1 unit of BisI for 16 hours at 37°C. The pFsp4HI1 plasmid carries a gene for Fsp4HI DNA-methyltransferase, which modifies

DNA forming


5'-G(5mC)NGC-3'/3'-CGN(5mC)G-5'.

1.Chmuzh E.V., Kashirina J.G., Tomilova J.E., Mezentseva N.V., Dedkov V.S., Gonchar D.A., Abdurashitov M.A., Degtyarev S.Kh. A Novel Restriction Endonuclease BisI from Bacillus subtilis T30, Recognizes a Methylated DNA Sequence 5'-G(m5C)^NGC-3'.// Biotekhnologia (Moscow), No.3, p.22-26 (2005) (In Russian). Online version in English: http://science.sibenzyme.com/article8 article 7 1.phtml

Heat inactivation:

Yes (65° C for 20 minutes)

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	10-25	25-50	50-75	75-100	50-75

E533 E534

100 u.a. 500 u.a. Overdigestion assay: No detectable

degradation of 1µg of Lambda DNA was observed after incubation with 5

units of enzyme for 16 hours at 30°C

in a total reaction volume of 50 μl.

The enzyme cleaves C5-methylated DNA and doesn't cut unmodified DNA! [1]

Concentration: 5000 units/ml

Assayed on DNA pFsp4HI3/DriI is a linearized plasmid pFsp4HI3, which carries a gene of DNA-methyltransferase M.Fsp4HI and includes three canonical sites:

5'-G(5mC)NG(5mC)-3'/3'-CGN(5mC)G-5'[2].

One unit is defined as the amount of enzyme required to hydrolyze at least one of three canonical sites

5'-G(5mC)NG(5mC)-3'/3'-CGN(5mC)G-5'

in 1 µg of linearized plasmid pFsp4HI3 in 1 hour at 30°C

in a total reaction volume of 50 µl.

Reagents Supplied with Enzyme: 10×SE Buffer W

Reaction conditions: 1× SE Buffer W

Incubate at 30°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 200 μg/ml BSA; 50% glycerol. Store at -20°C.

1. Chernukhin V.A., Tomilova J.E., Chmuzh E.V., Sokolova O.O., Dedkov V.S., Degtyarev S.Kh. Bacterial strain Bacillus simplex - producer of BlsI site specific endonuclease. // Russian Federation patent RU 2322494 C1 (2006).

2. Chmuzh E.V., Kashirina Yu.G., Tomilova Yu.E., Chernukhin V.A., Okhapkina S.S., Gonchar D. A., Dedkov V.S., Abdurashitov M. A., Degtyarev S. Kh. Gene cloning, comparative analysis of the protein structures from Fsp4HI restriction-modification system and biochemical characterization of the recombinant DNA methyltransferase M.Fsp4HI. // Molecular Biology, V.41, No 1, p. 43-50 (2007)

Heat inactivation:

Yes (65° C for 20 minutes)

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	10-25	10-25	50-75	100	75-100

Pu(5mC)^GPy PyG^(5mC)Pu E493

100 u.a. E494 500 u.a.

Overdigestion assay: No detectable

degradation of lug of Lambda DNA

was observed after incubation with 8

units of enzyme for 16 hours at 30°C

in a total reaction volume of 50 µl.

The enzyme cleaves only C5-methylated DNA and does not cut unmodified DNA and DNA with N4-methylcytosines![1]

Concentration: 10 000 units/ml

Assayed on DNA pHspAI2/GsaI is a linearized plasmid pHspAI2, which carries a gene of DNA-methyltransferase M.HspAI (recognition sequence 5'-GCGC-3') and includes a unique GlaI recognition site:

5'-G(5mC)G(5mC)-3'/3'-(5mC)G(5mC)G-5'[2].

One unit is defined as the amount of enzyme required to hydrolyze completely a unique 5'-G(5mC)G(5mC)-3'/3'-(5mC)G(5mC)G-5'

site in 1 µg of pHspAI2 plasmid DNA, which is linearized with GsaI, in 1 hour at 30°C in a total reaction volume of 50 µl.

Reagents Supplied with Enzyme:

10×SE Buffer Y, pHspAI2/GsaI DNA.

pHspAI2/GsaI DNA is a linearized plasmid pHspAI2, which includes a gene of DNAmethyltransferase M.HspAI(recognition sequence 5'-GCGC-3') and contains a unique GlaI canonical site: 5'-G(5mC)G(5mC)-3'/3'-(5mC)G(5mC)G-5'.

Reaction conditions: 1× SE Buffer Y.

Incubate at 30°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 0,05% Triton X-100; 100 μg/ml BSA, 50% glycerol.

Store at -20°C.

1.Chernukhin V.A., Nayakshina T.N., Tomilova J.E., Mezentseva N.V., Dedkov V.S., Degtyarev S.Kh. Bacterial strain Glacial ice bacterium I producer of GlaI restriction endonuclease. // Russian Federation patent RU 2287012 C1 (2006).

2.Chernukhin V.A., Najakshina T.N., Abdurashitov M.A., Tomilova J.E., Mezentzeva N.V., Dedkov V.S., Mikhnenkova N.A., Gonchar D.A., Degtyarev S. Kh A novel restriction endonuclease GlaI recognizes methylated sequence 5'-G(5mC)^GC-3'.// Biotechnologia V.4. p.31-35(2006) (In Russian). Online version in English: http://science.sibenzyme.com/article8_article_11_1.phtml

3. Tarasova G. V., Nayakshina T. N., Degtyarev S. Kh. Substrate specificity of new methyl-directed DNA endonuclease Glal . // BMC Molecular Biology 2008, 9:7.

4. Tomilova J.E., Chernukhin V.A., Degtyarev S.Kh. Dependence of site-specific endonuclease Glal activity on quantity and location of methylcytosines in the recognition sequence 5'-GCGC-3'. // Bulletin of biotechnology and physico-chemical biology V.2, No 1, p.30-39 (2006) (In Russian). Online version in English: http://science.sibenzyme.com/article10_article_22_1.phtml

5. Chernukhin V.A, Abdurashitov M.A., Tomilov V.N., Gonchar D.A., Degtyarev S.Kh. Comparative analysis of mouse chromosomal DNA digestion with restriction endonucleases in vitro and in silico // "Ovchinnikov bulletin of biotechnology and physical and chemical biology" V.3, No 4, pp 19-27, 2007. Online version in English: http://science.sibenzyme.com/article14_article_46_1.phtml

6. Abdurashitov M.A., Chernukhin V.A, Gonchar D.A., Degtyarev S.Kh. Glal digestion of mouse γ-satellite DNA: study of primary structure and ACGT sites methylation.// BMC Genomics 2009, 10:322.

7. D. A. Gonchar, A. G. Akishev, S. Kh. Degtyarev BlsI- and GlaI-PCR assays - a new method of DNA methylation study // "Ovchinnikov bulletin of biotechnology and physical and chemical biology" V.6, No 1, pp 5-12, 2010

Online version in English: http://science.sibenzyme.com/article12 article 53 1.phtml

Heat inactivation:

SE Buffers В Yes (65° C for 20 minutes) Activity in SE Buffers (% of max) 75 - 100100

The enzyme activity depending on number and position of methylated nucleotides in the recognition sequence:

recognition sequence	G(mC)G(mC)	R(mC)G(mC)	G (mC)R(mC)
	(mC)G(mC) G	Y G(mC) G	(mC) G Y G
Activity, %	100	> 25	> 6

E519 E520 50 u.a. 250 u.a.

Overdigestion assay: No detectable degradation of 1μg of Lambda DNA was observed after incubation with 1

units of enzyme for 16 hours at 37°C

in a total reaction volume of 50 µl.

The enzyme cleaves C5-methylated DNA and does not cut unmodified DNA! [1]

Concentration: 1 000 units/ml

Assayed on DNA pFsp4HI3/DriI is a linearized plasmid pFsp4HI3, which includes a gene of DNA-methyltransferase M.Fsp4HI and contains a unique GluI site:

5'-G(5mC)NG(5mC)-3'/3'-(5mC)GN(5mC)G-5'. [2]

One unit is defined as the amount of enzyme required to hydrolyze completely a unique canonical site:

5'-G(5mC)NG(5mC)-3'/3'-(5mC)GN(5mC)G-5'

in 1 µg of linearized plasmid pFsp4HI3/DriI in 1 hour at 37°C

in a total reaction volume of 50 μ l.

Reagents Supplied with Enzyme:

10×SE Buffer Y

Reaction conditions: 1× SE Buffer Y

Incubate at 37°C.

Storage buffer: 10 mM KH₂PO₄ (pH 7.45); 200 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μ g/ml BSA; 50% glycerol.

Store at -20°C.

- 1. Chernukhin V.A., Chmuzh E.V., Tomilova J.E., Nayakshina T.N., Dedkov V.S., Degtyarev S.Kh. Bacterial strain Glacial ice bacterium producer of GluI site specific endonuclease. // Russian Federation patent RU 2322492 C1 (2006).
- 2. Chernukhin V.A., Chmuzh E.V., Tomilova Yu.E., Nayakshina T.N., Gonchar D.A., Dedkov V.S., Degtyarev S.Kh. A novel site-specific endonuclease GluI recognizes methylated DNA sequence 5'-G(5mC)^NG(5mC)-3'/3'-(5mC)GN^(5mC)G.// Bulletin of biotechnology and physicochemical biology named by Yu.A.Ovchinnikov (Moscow), V.3, No.2, p.13-17 (2007) (In Russian). Online version in English: http://science.sibenzyme.com/article8_article_24_1.phtml
- 3. Chernukhin V.A, Abdurashitov M.A., Tomilov V.N., Gonchar D.A., Degtyarev S.Kh. Comparative analysis of mouse chromosomal DNA digestion with restriction endonucleases in vitro and in silico // "Ovchinnikov bulletin of biotechnology and physical and chemical biology" V.3, No 4, pp 19-27, 2007. Online version in English: http://science.sibenzyme.com/article14_article_46_1.phtml

Heat inactivation:

Yes (80° C for 20 minutes)

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	75-100	75-100	25-50	50-75	100

E541 50 u.a.

Overdigestion assay: No detectable

degradation of lug of Lambda DNA

was observed after incubation with 1 units of enzyme for 16 hours at 30°C

in a total reaction volume of 50 µl.

E542 250 u.a.

The enzyme cleaves C5-methylated DNA and doesn't cut unmodified DNA! [1]

Kro I doesn't cleave DNA modified with MspI DNA-methyltransferase

Concentration: 1 000 units/ml

Assayed on DNA pMHpaII1/DriI is a linearized plasmid pMHpaII1.

pMHpaII1 carries a gene of DNA-methyltransferase M.HpaII, which methylates sites

5'-CCGG-3' producing 5'-C(5mC)GG-3'/3'-GG(5mC)C-5',

and includes three canonical sites

5'-GC(5mC)GGC-3'/3'-CGG(5mC)CG-5'.

One unit One unit is defined as the amount of enzyme required to hydrolyze completely 1 µg of linearized plasmid pMHpaII1 in 1 hour at 37°C in a total reaction volume of 50 μl.

Reagents Supplied with Enzyme:

10×SE Buffer G

Reaction conditions: 1× SE Buffer G

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA; 7 mM 2-

mercaptoethanol; 200 µg/ml BSA; 50% glycerol.

Store at -20°C.

1. Chernukhin V.A., Zhuravleva R.O., Tarasova G.V., Boltengagen A. A., Akishev A.G., Mikhnenkova N.A., Degtyarev S.Kh. Bacterial strain Kocuria rosea - producer of KroI site specific endonuclease. // Russian Federation patent RU 2394099 C1 (2010).

Heat inactivation:

Yes (65° C for 20 minutes)

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	100	25-50	50-75	75-100

G(mA)[^]TC E489 50 u.a. Mal I (prototype Dpn I) CT^(mA)G E490 250 u.a. Isolated from Marinococus albus I

The enzyme cleaves only methylated DNA

Concentration: 500 - 1 000 units/ml

Assaved on

pBR322 DNA (dam-methylated)

One unit One unit of the enzyme is the amount required to hydrolyze 1 µg of pBR322 DNA (dam-methylated) in 1 hour at 37°C in a total reaction volume of 50 µl.

Reagents Supplied with Enzyme:

10×SE Buffer Mal I

Reaction conditions: 1×SE Buffer Mal I

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 100 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 100 μg/ml BSA, 50% glycerol.

Diluent: SE Buffer A Store at -20°C. Heat inactivation:

Yes (65° C for 20 minutes)

SE Buffers	В	G	0	W	Y
Activity in SE Buffers (% of max)	25-50	25-50	50-75	75-100	50-75

Ligation/recutting assay: After 2-

fold overdigestion with Mal I, ~80%

of the DNA fragments can be ligated

nonspecific activity was detected

after incubation of 1 µg of λ DNA

with 2 units of Mal I for 16 hours.

assay:

and recut.

Overdigestion

Isolated from Microbacterium testaceum 17B

$G(5mC)G(5mC)^NG(5mC)G(5mC)$

 $(5mC)G(5mC)GN^{(5mC)}G(5mC)G$

500 u.a. E553 E554 2500 u.a.

50 μl.

Overdigestion assay: No detectable degradation of lug of Lambda DNA was observed after incubation with 10 units of enzyme for 16 hours at 55°C in a total reaction volume of

The enzyme cleaves only C5-methylated DNA

and does not cut unmodified DNA! [1]

Concentration: 10 000 units/ml

Assayed on pHspAI10/DriI+M.Fsp4HI is a plasmid pHspAI10, which is linearized with DriI, and, additionally, modified with Fsp4HI DNA methyltransferase. pHspAI10 carries a gene of HspAI DNA methyltransferase, that modifies the sequence

5'-GCGC-3', producing 5'-G(5mC)GC-3'.

M.Fsp4HI modifies the sequence

5'-GCNGC-3', producing 5'-G(5mC)NGC-3'.

A substrate pHspAI10/DriI+M.Fsp4HI includes one site

5'-G(5mC)G(5mC)NG(5mC)G(5mC)-3'/3'-(5mC)G(5mC)GN(5mC)G(5mC)G-5', which is MteI canonical site [1]. The enzyme activity depends on a number and positions of

methylated nucleotides in the recognition sequence. For example, MteI cuts the recognition site

with six 5-methylcytosines, but the enzyme activity is reduced for more that one order [1]. One unit is defined as the amount of enzyme required to hydrolyze completely 1 µg of linearized plasmid pHspAI10/DriI+M.Fsp4HI in 1 hour at 55°C in a total reaction volume

Reagents Supplied with Enzyme:

10×SE Buffer W

Reaction conditions: 1 x SE-buffer W

Incubate at 55°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 200 μg/ml BSA, 50% glycerol.

Store at -20°C.

1. V.A. Chernukhin, E.V. Kileva, V.A. Sokolova., D.A. Gonchar, L.N. Golikova, V.S. Dedkov, N.A. Mikhnenkova, S.Kh. Degtyarev. A new methyl-directed site-specific DNA endonuclease MteI cleaves nine nucleotides sequence 5'-G(5mC)G(5mC)^NG(5mC)GC-3'/3'-CG(5mC)GN^(5mC)G(5mC)G-5' // "Ovchinnikov bulletin of biotechnology and physical and chemical biology" V.8, No 1, pp 16-26, 2012

Heat inactivation:

No (80° C for 20 minutes)

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	25-50	75-100	75-100	100	50-75

(5mC)GNNNNN^NN(5mC)G

G(5mC)NN^NNNNNG(5mC)

E505

E506

enzyme to

digestion.

50 u.a.

Overdigestion assay: No detectable

degradation of 1µg of Lambda DNA

was observed after incubation with 1 units of enzyme for 16 hours at 37°C

in a total reaction volume of 50 µl.

Notes: When using a buffer other

than the optimal (suppied) SEBuffer,

it may be necessary to add more

achieve

complete

250 u.a.

Isolated from Paracoccus carotinifaciens 3K The enzyme cleaves only C5-methylated DNA

and does not cut unmodified DNA! [1]

Concentration: 1 000 units/ml

Pcs I (prototype Pcs I)

Assayed on pMHgaI/DriI is a linearized plasmid pMHgaI, which carries genes of DNAmethyltransferases M1.HgaI (recognition sequence 5'-GCGTC-3') and M2.HgaI (5'-GACGC-3') and includes a unique PcsI canonical site:

5'-W(5mC)GNNNNNNN(5mC)GW-3'/3'-WG(5mC)NNNNNNNG(5mC)W-5'[1].

One unit defined as the amount of enzyme required to digest a unique site 5'-A(5mC)GNNNNNNN(5mC)GT-3'

in 1 μg of DNA pMHgaI/DriI in 1 hour at 37°C in a total reaction volume of 50 μl.

Reagents Supplied with Enzyme:

10×SE Buffer Pcs I

Reaction conditions: 1 x SE-buffer PcsI

Incubate at 37°C.

Storage buffer: 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 0.1 mg/ml BSA, 50% glycerol.

Store at -20°C.

1. Chernukhin V.A., Nayakshina T.N., Tarasova M.V., Golikova L.N., Akishev A.G., Dedkov V.S., Mikhnenkova N.A., Degtyarev S.Kh. Bacterial strain Paracoccus carotinifaciens 3K- producer of PcsI site specific endonuclease. // Russian Federation patent RU 2377294 C1 (2009).

Heat inactivation:

Yes (65° C for 20 minutes)

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	25-50	0	10-25	50-75

DNA sequence with at least three 5mC: G(5mC)N^G(5mC) (5mC)G^N(5mC)G

E579 50 u.a. E580 250 u.a.

Overdigestion assay: No detectable degradation of 1µg of Lambda DNA was observed after incubation with 2 units of enzyme for 16 hours at 37°C

in a total reaction volume of 50 μl.

The enzyme cleaves C5-methylated DNA and doesn't cut unmodified DNA! [1]

Concentration: 1000 units/ml

Assayed on DNA pFsp4HI3/DriI is a linearized plasmid pFsp4HI3, which carries a gene of DNA-methyltransferase M.Fsp4HI and includes three sites:

5'-G(5mC)NG(5mC)-3'/3'-CGN(5mC)G-5' [2].

One unit is defined as the amount of enzyme required to hydrolyze completely 1 μg of linearized plasmid pFsp4HI3 in 1 hour at 37°C in a total reaction volume of 50 μl

Reagents Supplied with Enzyme: 10×SE Buffer Y

Reaction conditions: 1× SE Buffer Y

Incubate at 37°C.

Storage buffer: 20 mM Tris-HCl (pH 7.4); 200 mM NaCl; 0.1 mM EDTA;

7 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C.

- 1. V.A. Chernukhin, T.N. Nayakshina, D.A. Gonchar, Ju.E. Tomilova, M.V.Tarasova, V.S. Dedkov, N.A. Mikhnenkova, S.Kh. Degtyarev A new site-specific methyl-directed DNA endonuclease PkrI recognizes and cuts methylatedDNA sequence 5'-GCN'GC-3'/3'-CG^NCG-5' carrying at least three 5-methylcytosines. // Bulletin of biotechnology and physico-chemical biology named by Yu.A.Ovchinnikov (Moscow), V.7, No.3, p.35-42 (2011). (In Russian).
- 2. Chmuzh E.V., Kashirina Yu.G., Tomilova Yu.E., Chernukhin V.A., Okhapkina S.S., Gonchar D. A., Dedkov V.S., Abdurashitov M. A., Degtyarev S. Kh. Gene cloning, comparative analysis of the protein structures from Fsp4HI restriction-modification system and biochemical characterization of the recombinant DNA methyltransferase M.Fsp4HI. // Molecular Biology, V.41, No 1, p. 43-50 (2007)

Heat inactivation:

Yes (65° C for 20 minutes)

SE Buffers	В	G	О	W	Y
Activity in SE Buffers (% of max)	50-75	75-100	10-25	25-50	100

DNA – Methyltransferases

M3.BstF5I Isolated from E.coli strain, that carries the cloned M3.BstF5I gene from Bacillus stearothermophilus F5

 CH_3 5'-GGATG-3' 3'-CCTAC-5'

M007

1000 u

100 u

Description: M3.BstF5I Methylase modifies the adenin residue (mA) in the recognition secuence 5'-GGATG-3'

Concentration: 10000 units/ml

Reagents Supplied: 10 × SEBuffer K, SAM

Incubate at 60°C.

Storage Conditions: 10 mM Tis-HCl (pH 7.5); 50 mM NaCl; 50% glycerol. Store at -20°C.

Unit Definition: One unit of the enzyme is the amount required to protect 1 μg of Lambda DNA in 1 hour at 60°C in a total reaction volume of 20 µl against cleavage by

BstF5 I restriction endonuclease.

1. Golikova L.N., Netesova N.A., Gutorov V.V., Belavin P.A., Abdurashitov M.A., Gonchar D.A., Degtyarev S.Kh. Multiplicity of site-specific DNAmethyltransferases of the BstF51 restriction modification system from Bacillus stearothermophilus F5.// Molecular Biology(Moscow), V.34, No.3, p.443-447 (2000) (In Russian).

 CH_3 M.Fsp4HI Isolated from E.coli strain, that carries the cloned M.Fsp4HI gene 5'-GCNGC-3' from Flavobacterium species 4H M001 3'-CGNCG-5'

Description: M.Fsp4HI Methylase modifies the internal cytosine residue (C5) in the recognition secuence 5'-GCNGC-3'.

Concentration: 500-1000 units/ml

Reagents Supplied: 10 × SEBuffer B, SAM

Incubate at 30°C.

Storage Conditions: 10 mM Tis-HCl (pH 7.6); 100 mM NaCl; 0.1 mM EDTA;

CH₃

10 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C. Unit Definition: One unit of the enzyme is the amount required to protect 1 µg of Lambda DNA in 1 hour at 30°C in a total reaction volume of 20 µl against cleavage by

Fsp4HI restriction endonuclease.

1. Chmuzh E.V., Kashirina Yu.G., Tomilova Yu.E., Chernukhin V.A., Okhapkina S.S., Gonchar D. A., Dedkov V.S., Abdurashitov M. A., Degtyarev S. Kh. Gene cloning, comparative analysis of the protein structures from Fsp4HI restriction-modification system and biochemical characterization of the recombinant DNA methyltransferase M.Fsp4HI. // Molecular Biology, V.41, No 1, p.43-50 (2007) (In Russian).

CH₃ M.HspAl Isolated from E.coli strain, that carries the cloned M.HspAI gene 5'-GCGC-3' from Haemophilus species AI M003 100 u 3'-CGCG-5' CH₃

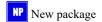
Description: M.HspAI Methylase modifies the internal cytosine residue (C5) in the recognition secuence 5'-GCGC-3'.

Concentration: 1000-3000 units/ml

Reagents Supplied: 10 × SEBuffer B, SAM

Incubate at 37°C.

Storage Conditions: 10 mM Tis-HCl (pH 7.6); 100 mM NaCl; 0.1 mM EDTA;


10 mM 2-mercaptoethanol; 50% glycerol.. Store at -20°C. Unit Definition: One unit of the enzyme is the amount required to protect 1 μg of Lambda DNA in 1 hour at 37°C in a total reaction volume of 20 µl against cleavage by HspAI restriction endonuclease.

1. Chernukhin V.A., Najakshina T.N., Abdurashitov M.A., Tomilova J.E., Mezentzeva N.V., Dedkov V.S., Mikhnenkova N.A., Gonchar D.A., Degtyarev S. Kh A novel restriction endonuclease GlaI recognizes methylated sequence 5'-G(5mC)^GC-3'.// Biotechnologia V.4. p.31-35 (2006) (In Russian). Online version in English: http://science.sibenzyme.com/article8 article 11 1.phtml

> R = A or GW = A or TS = G or CK = G or TM = A or CY = T or CD = A or G or TH = A or C or TB=C or G or T V=A or C or G N = A or C or G or T

SibEnzyme

SibEnzyme

Polymerases

DNA Polymerase I, Large (Klenow) Fragment

Isolated from E.coli strain that carries the cloned DNA Polymerase I, Large (Klenow) Fragment gene

Description: DNA Polymerase I, Large (Klenow) Fragment is a proteolytic product of *E. coli* DNA Polymerase I which retains polymerization and $3'\rightarrow 5'$ exonuclease activity, but has lost $5'\rightarrow 3'$ exonuclease activity.

Applications:

- dideoxy sequencing;

- polishing ends;

- second strand cDNA synthesis Concentration: 5 000 units/ml

Reagents Supplied with Enzyme: 10 × Klenow Buffer **Storage Conditions:** 10 mM KH₂PO₄ (pH 7.5); 50 mM KCl; 0.5 mM EDTA; 7 mM 2-mercaptoethanol; 50% glycerol.

Store at -20°C.

Heat Inactivation: 75°C for 20 minutes.

Unit Definition: One unit is the amount of enzyme required to incorporate 10 nmol of dNTPs into an acid-insoluble material in 30 minutes at 37°C.

200 u

1000 u

5000 u

25000 u

200 u.

1000 u

E325

E326

Unit Assay Conditions: 1 × Klenow Buffer,

33 μM dNTP including [3H]-dTTP and 70 $\mu g/ml$ denatured calf thymus DNA.

Quality Control: Purified free of contaminating endonucleases and exonucleases.

M-MuLV Reverse Transcriptase RNase H -

Isolated from E.coli strain that carries the recombinant plasmid

Description: Moloney Murine Leukemia Virus (M-MuLV) Reverse Transcriptase is an RNA directed DNA polymerase. This enzyme can synthesize a complementary DNA strand initiating from a primer using either RNA (cDNA synthesis) or single-stranded DNA as a template. The absence of RNase H activity enhances the synthesis of long cDNAs and therefore the enzyme is recommended for preparing long cDNAs

Application: first strand cDNA synthesis. Concentration: 50 000–200 000 units/ml Reagents Supplied with Enzyme:

10 × M-MulV Reverse Transcriptase Buffer Dilution Buffer M-MulV Reverse Transcriptase Storage Conditions: 10 mM KH₂PO₄ (pH 7.5);

E317

E318

0,1 mM EDTA; 200 mM NaCl; 7 mM 2-mercaptoethanol; 50% glycerol. **Store at -20°C.**

Unit Definition: One unit is the amount of the enzyme required to incorporate 1 nmol of dTTP into an acid-insoluble material in 10 minutes at 37°C using poly(rA)•oligo(dT).

Unit Assay Conditions: 50 mM Tris-HCl (pH 8.3), 6 mM MgCl₂, 10 mM DTT, 0.5 mM [³H]-dTTP,

0.4 mM poly(rA)•oligo(dT) 12-18.

Quality Control: Purified free of detectable levels of RNase, endonuclease and exonuclease activities.

Note: High enzyme concentration may lead to RT-PCR inhibition. In this case the enzyme preparation should be diluted in 5, 10 or 20 times with M-MuLV Reverse Transcriptase dilution Buffer

E339

E340

T4 DNA Polymerase

Isolated from E.coli strain that carries the recombinant plasmid

Description: T4 DNA Polymerase catalyzes the synthesis of DNA in the $5'\rightarrow 3'$ direction and requires the presence of template and primer. This enzyme has a $3'\rightarrow 5'$ exonuclease activity.

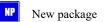
Applications:

- polishing ends;

- probe labeling using replacement synthesis.

Concentration: $2\ 000 - 5\ 000\ units/ml$ **Reagents Supplied with Enzyme:** $10 \times T4\ DNA\ Polymerase\ Buffer$

Storage Conditions: 20 mM Tris-HCl (pH 7.5); 50 mM KCl; 10 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C.


Heat Inactivation: 75°C for 10 minutes.

Unit Definition: One unit is the amount of enzyme required to incorporate 10 nmol of dNTP into acid-precipitable material in 30 minutes at 37°C.

Unit Assay Conditions: $1 \times T4$ DNA Polymerase Reaction Buffer, 33 μ M dNTPs including [3 H]-dTTP and 70 μ g/ml denatured calf thymus DNA.

Quality Control: Purified free of contaminating endonucleases and exonucleases.

New product

SP-Taq DNA Polymerase

Isolated from *E.coli* strain that carries the cloned Taq DNA polymerase gene from Thermus aquaticus

Description: SP-*Taq* DNA Polymerase is a fraction of *Taq* DNA Polymerase which was specially treated and additionally purified. It doesn't contain PCR detected DNA contaminations. Enzyme is suitable for different manipulations in the field of PCR-diagnostics.

Applications:

- nick translation;

- primer extension reaction. **Concentration:** 5 000 units/ml

Reagents Supplied with Enzyme: 10 × Taq-DNA-polymerase buffer. **Storage conditions:** 20 mM Tris-HCl (pH 7.6); 100 mM KCl; 0.1 mM EDTA; 1 mM DTT; 0.5 % Triton X-100; 50% glycerol.

Store at -20°C.

NEW

E333 E334 200 u 1000 u

200 u

1000 u

200 u

200 u

1000 u

1000 u

Unit Definition: One unit is the amount of enzyme required to incorporate 10 nmol of dNTP into acid-insoluble material in 30 minutes at **72°C**.

Unit Assay Conditions: 60 mM Tris-HCl (pH 8.5 at 25°C); 25 mM KCl; 1.5 mM MgCl₂, 10 mM 2-mercaptoethanol, 0.1% Triton X-100, 200 μM dATP, dCTP, dGTP, 50 mkM H-TTP, 12.5 μg activated Calf Thymus DNA in a total reaction volume of 50 μl.

Quality Control: Purified free of contaminating

E331

E332

endonucleases and exonucleases.

Taq DNA Polymerase with Standard Taq Buffer

Isolated from *E.coli* strain that carries the cloned Taq DNA polymerase gene from Thermus aquaticus

Description: Taq DNA polymerase is a thermostable DNA polymerase that possesses a 5' \rightarrow 3' polymerase activity and a double strand specific 5' \rightarrow 3' exonuclease activity.

Applications:

- nick translation;

- primer extension reaction.

Concentration: 5 000 units/ml

Reagents Supplied with Enzyme: 10 × Taq-DNA-polymerase buffer. **Storage conditions:** 20 mM Tris-HCl (pH 7.6); 100 mM KCl; 0.1 mM EDTA; 1 mM DTT; 0.5 % Triton X-100; 50% glycerol.

Store at -20°C.

Unit Definition: One unit is the amount of enzyme required to incorporate 10 nmol of dNTP into acid-insoluble material in 30 minutes at 72°C.

Unit Assay Conditions: $1 \times Taq\text{-DNA-polymerase}$ buffer, 200 μM dNTPs including [^3H]-dTTP and 250 $\mu\text{g/ml}$ activated calf thymus DNA.

Quality Control: Purified free of contaminating endonucleases and exonucleases.

Taq DNA Polymerase with Standard Taq Buffer (Mg²⁺ free)

Isolated from *E.coli* strain that carries the cloned Taq DNA polymerase gene from Thermus aquaticus

Description: Taq DNA polymerase is a thermostable DNA polymerase that possesses a 5' \rightarrow 3' polymerase activity and a double strand specific 5' \rightarrow 3' exonuclease activity.

Applications:

- nick translation;

- primer extension reaction.

Concentration: 5 000 units/ml Reagents Supplied with Enzyme:

10 × Taq-DNA-polymerase buffer (Mg²⁺ free).

Storage conditions: 20 mM Tris-HCl (pH 7.6); 100 mM KCl; 0.1 mM EDTA; 1 mM DTT; 0.5 % Triton X-100; 50% glycerol.

Store at -20°C.

Unit Definition: One unit is the amount of enzyme required to incorporate 10 nmol of dNTP into acid-insoluble material in 30 minutes at **72°C**.

E341

E342

Unit Assay Conditions: 1 × Taq-DNA-polymerase buffer, 200 μM dNTPs including [³H]-dTTP and 250 μg/ml activated calf thymus DNA.

Quality Control: Purified free of contaminating endonucleases and exonucleases.

Taq DNA Polymerase with AS Buffer

Isolated from *E.coli* strain that carries the cloned Taq DNA polymerase gene from Thermus aquaticus

Description: Taq DNA polymerase is a thermostable DNA polymerase that possesses a 5' \rightarrow 3' polymerase activity and a double strand specific 5' \rightarrow 3' exonuclease activity.

Applications:

- nick translation;

- primer extension reaction.

Concentration: 5 000 units/ml

Reagents Supplied with Enzyme: 10 × AS (Ammonium Sulfate) buffer.

Storage conditions: 20 mM Tris-HCl (pH 7.6); 100 mM KCl; 0.1 mM EDTA; 1 mM DTT; 0.5 % Triton X-100; 50% glycerol.

Store at -20°C.

Unit Definition: One unit is the amount of enzyme required to incorporate 10 nmol of dNTP into acid-insoluble material in 30 minutes at 72°C.

Unit Assay Conditions: 1 × AS (Ammonium Sulfate) buffer, 200 μM dNTPs including [³H]-dTTP and 250 μg/ml activated calf thymus DNA.

E337

E338

Quality Control: Purified free of contaminating endonucleases and exonucleases.

New product

61

TaqSE DNA Polymerase

Isolated from *E.coli* strain that carries the recombinant plasmids.

Description: TaqSE DNA polymerase is a complex mix of thermostable DNA polymerase that possesses a $5'\rightarrow 3'$ polymerase activity, $3'\rightarrow 5'$ exonuclease (proofreading) activity and a double strand specific $5'\rightarrow 3'$ exonuclease activity.

It may increase yield of reaction product compare to Taq DNA polymerase.

Application: long high fidelity primer extension reaction.

Concentration: 5 000 units/ml

Reagents Supplied with Enzyme: 10 × Taq-DNA-polymerase buffer. **Storage conditions:** 20 mM Tris-HCl (pH 7.6); 100 mM KCl; 0.1 mM EDTA; 1 mM DTT; 0.5 % Triton X-100; 50% glycerol.

Store at -20°C.

Unit Definition: One unit is the amount of enzyme required to incorporate 10 nmol of dNTP into acid-insoluble material in 30 minutes at **72°C**.

200 u

200 u

1000 u

1000 u

E313

E314

Unit Assay Conditions: $1 \times Taq\text{-DNA-polymerase}$ buffer, 200 μM dNTPs including [^3H]-dTTP and 250 $\mu\text{g/ml}$ activated calf thymus DNA.

Quality Control: Purified free of contaminating endonucleases and exonucleases.

Hot Start Taq-DNA Polymerase

Description: Hot Start Taq DNA Polymerase is complex mixture of a thermostable 94 kD Taq DNA Polymerase purified from E.coli recombinant strain expressing *Thermus aquaticus* polymerase gene and specific monoclonal antibodies from mouse.

Hot Start Taq DNA Polymerase is inactive under conditions of amplification reaction preparation. It can eliminate amplification artefacts such as primer-dimer formation and mispriming during preamplification stage and thus may provide improved specificity when compared to standard DNA polymerases.

An advantage of Hot Start Taq DNA Polymerase is the absence of additional heating step for polymerase activation. Heat activation of enzyme occurs during the first denaturation step. An inactive complex of Hot Start Taq DNA Polymerase dissociates automatically over +70°C, allowing activation of DNA polymerase.

Applications: -Highly specific PCR;

-Multiplex PCR (highly recommended);

-High sensitivity applications.

Concentration: 5 000 units/ml Reagents Supplied with Enzyme:

10 × Hot Start Taq-DNA-polymerase buffer. Supplementary material is 50 mM MgCl₂. Storage and dilution buffer: 20 mM Tris-HCl, pH 8.0, 100 mM KCl, 0,1 mM EDTA, 1 mM DTT, 50 % glycerol, 0.5 % Nonidet P-40, 0.5 % Tween-20. Store at -20°C. Unit Definition: One unit of activity is the amount of enzyme required to incorporate 10 nmoles of dNTP into

E351

E352

Notes: The recommended amount of enzyme is 1 u per 50μ l of a total reaction volume.

acid-insoluble material in 30 minutes at 74 °C.

Pfu DNA Polymerase

Isolated from *E.coli* strain that carries the cloned DNA *Polymerase* gene from *Pyrococcus furiosus*.

Description: Pfu DNA Polymerase catalyzes the DNA-dependent polymerization of nucleotides into duplex DNA in the 5'→3' direction in the presence of magnesium ions. The enzyme also exhibits 3'→5'exonuclease (proofreading) activity, that enables the polymerase

to correct nucleotide incorporation errors. Products of reaction have blunt ends.

Application: Pfu DNA Polymerase useful for high fidelity synthesis and polishing ends.

Concentration: 5 000 units/ml Reagents Supplied with Enzyme:

 $10 \times Pfu$ DNA polymerase buffer, $50 \times BSA$ (5 mg/ml BSA). **Storage conditions:** 10 mM K₂HPO₄ (pH 7.4); 0,1 mM DTT, 0.1 mM EDTA; 0.5 % Tween 20; 50% glycerol.

Store at -20°C.

To obtain 100% activity, BSA should be added to the $1 \times$ reaction mix to a final concentration of $100 \mu g/ml$.

Unit Definition: One unit of enzyme catalyzes the incorporation of 10 nanomoles of deoxyribonucleotides into a polynucleotide fraction (adsorbed on DE- 81) in 30 minutes at **72°C**.

200 u

1000 u

E353

E354

Unit Assay Conditions: $1 \times Pfu$ DNA polymerase buffer, 0.1 mg/ml BSA, $200\mu g/ml$ activated calf thymus DNA, 0.2 mM of each dNTP, 0.4MBq/ml [3 H]- dTTP in 50 μl reaction mix.

Quality Control: Purified free of contaminating endonucleases and exonucleases.

Notes: 1. Do **not** use dU-contained templates.

2. This enzyme is **not** recommended for a number of experiments dealing with very low-annealing temperature amplification approaches (e.g. RAPDs, Random Amplified Polymorphic DNAs).

3. Prepare PCR mix at 0°C.

Set in amplificator preheated to 95°C.

4. The recommended amount of enzyme is 2.5 u per 50μl of a total reaction volume.

T7 RNA Polymerase

Isolated from *E.coli* strain that carries the cloned T7 gene I

Description: T7 RNA Polymerase catalyzes the synthesis of RNA in the $5' \rightarrow 3'$ direction in the presence of a DNA template containing a T7 phage promoter.

Application: -Radiolabeled RNA probe preparation

-RNA generation for *in vitro* translation -RNA generation for studies of RNA structure,

processing and catalysis

Concentration: 100 000 units/ml

Reagents Supplied with Enzyme: $10 \times T7$ RNA polymerase buffer Storage conditions: 50 mM Tris-HCl (pH 7.5); 100 mM NaCl; 20 mM 2-mercaptoethanol; 1 mM EDTA; 50% Glycerol; 0.1% Triton X-100.

Store at -20°C.

Unit Definition: One unit is the amount of enzyme required to incorporate 1 nmol NTP into an acid-insoluble material in 60 minutes at 37°C.

5000 u

25000 u

E355

E356

Quality Control: Purified free of contaminating endonucleases and exonucleases.

SibEnzyme

DNA Modifying Enzymes

Alkaline Phosphatase, Calf Intestinal

Calf intestinal mucosa

Description: : Alkaline phosphatase catalyzes the removal of 5' phosphate groups from DNA, RNA and ribo- and deoxyribonucleoside triphosphates.

Applications:

- removing 5' and 3' phosphoryl groups from nucleic acids;
- preparing templates for 5' end labeling;
- preventing fragments from self ligating;

- dephosphorylation of proteins Concentration: 10 000 units/ml.

Reagents Supplied with Enzyme: 10 × SEBuffer O

Storage conditions: 10 mM Tris-HCl (pH 8.2);

E327

E328

100 u

500 u

200 u

1000 u

4000 u

20000 u

5000 u

25000 u

50 mM KCl;1 mM MgCl₂, 0,1 mM ZnCl₂, 50% glycerol.

Unit Definition: One unit is the amount of enzyme that hydrolyzes 1 µmol of p-nitrophenylphosphate to

p-nitrophenol in a total reaction volume of 1 ml in 1 min

Unit Assay Conditions: 1 M diethanolamine-HCl(pH 9.8), 0.5 mM MgCl₂ and 10 mM p-nitrophenylphosphate. These conditions are only used for quantitating enzyme activity.

Quality Control: Purified free of contaminating exonuclease, endonuclease, ribonuclease activities.

E365

E366

Thermolabile Alkaline Phosphatase

Isolated from E.coli strain that carries the cloned Alkaline Phosphatase gene from Alteromonas undina P2

Description: : Thermolabile Alkaline phosphatase catalyzes the removal of 5' phosphate groups from DNA, RNA and ribo- and

deoxyribonucleoside triphosphates. Concentration: 5 000 units/ml.

Reagents Supplied with Enzyme: 10 × SEBuffer W **Heat inactivation: Yes** (65° C for 20 minutes)

Storage conditions: 20 mM Tris-HCl (pH 7.6);

0,1 mM ZnCl₂, 50% glycerol.

Store at -20°C.

Unit Definition: One unit is the amount of enzyme that will dephosphorylate 1 µg of pUC19 DNA (linearized with Hind III) in 30 minutes at 25°C.

Dephosphorylation is defined as >95% inhibition of recirculation in a self-ligation reaction that is measured by transformation into E.coli.

Quality Control: Purified free of contaminating exonuclease, endonuclease, ribonuclease activities.

Endonuclease I

Isolated from Proteus vulgaris 84

Description: Endonuclease I hydrolyzes double- and single-stranded nucleic acids to oligonucleotides of 3-5 nucleotide in length with

5'-terminal phosphates.

Application: DNA and RNA degradation. **Concentration:** 10 000 – 50 000 units/ml.

Reagents Supplied with Enzyme: 10 × Endonuclease I Buffer.

Storage Conditions: 10 mM Tris-HCl (pH 7.4);

E323

E324

Unit Definition: One unit is the amount of enzyme that hydrolyze 1 µg of Lambda DNA in 30 minutes at 37°C. Unit Assay Conditions: 20 mM Glycine-NaOH (pH 9.5), 100 mM NaCl, 25 mM MgCl₂; 1 mM 2-mercaptoethanol. Quality Control: Purified free of contaminating

Exonuclease III (E. coli)

Isolated from a recombinant source

Description: Exonuclease III (E. coli) catalyzes the stepwise removal of mononucleotides from 3'-hydroxyl termini of double stranded DNA. Exonuclease III activity depends partially on helical structure and displays sequence dependence (C>A=T>G). Temperature, salt concentration and the ratio of enzyme to DNA greatly affect enzyme activity, requiring reaction conditions to be tailored to specific applications.

Applications:

- unidirectional nested deletions;
- site-directed mutagenesis;
- preparation of strand-specific probes;
- preparation of single-stranded substrates for dideoxy sequencing.

Concentration: 40 000 – 100 000 units/ml.

Reagents Supplied with Enzyme: 10 × Exonuclease III Buffer.

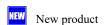
250 mM NaCl; 0,2 mM EDTA; 7 mM 2-mercaptoethanol; 100 μg/ml BSA; 50% glycerol.

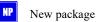
Store at -20°C.

phosphatase activity.

Storage Conditios: 10 mM Tris-HCl (pH 7.5);

E345


E346


50 mM KCl; 0.5 mM EDTA; 1 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C.

Unit Definition: One unit is the amount of enzyme required to produce 1 nmol of acid soluble total nucleotide in 30 minutes at 37°C.

Unit Assay Conditions:50 mM Tris-HCl(pH 7.5 at 25°C); 1 mM MgCl₂; 1 mM DTT,

0.15 mM sonicated pancreatic DNA.

RNA Ligase T4

Isolated from E.coli strain that carries the cloned RNA Ligase gene from bacteriophage T4

Description: RNA Ligase catalyzes ligation of a 5' phosphorylterminated nucleic acid donor to a 3' hydroxyl-terminated nucleic acid acceptor through the formation of a 3'→5'phosphodiester bond, with hydrolysis of ATP to AMP and PPi. Substrates include single-stranded RNA and DNA as well as dinucleoside pyrophosphates.

- labeling of 3'-termini of RNA with 5'-[32P] pCp;

- inter- and intra-molecular joining of RNA and DNA molecules.

Concentration: 10 000 units/ml.

Reagents Supplied with Enzyme: $10 \times T4$ RNA Ligase Buffer.

Storage conditions: 10 mM Tris-HCl(pH 7.4);

50 mM KCl; 0.1 mM EDTA; 1 mM DTT; 50% glycerol.

E349

E350

1000 u

5000 u

Store at -20°C.

Unit Definition: One unit is defined as the amount of enzyme required to convert of 1 pmol of [3H]ATP in

AMP -Ligase complex in 15 minutes at 25°C.

Unit Assay Conditions: 50 mM Tris-HCl (pH 7.8),

10 mM MgCl₂, 10 mM DTT, 0.2 μM [³H]ATP.

Quality Control: Free of contaminating single-stranded DNA exonuclease, endonuclease, ribonuclease phosphatase activities.

T4 Polynucleotide Kinase

E311 500 u Isolated from E.coli strain that carries the cloned Polynucleotide Kinase gene from E312 2500 u bacteriophage T4

Description: T4 polynucleotide Kinase catalyzes the transfer and exchange of $P_{\rm i}$ from the γ position of ATP to the 5' hydroxyl terminus of polynucleotides (double- and single-stranded DNA and RNA) and nucleoside 3'-monophosphates. The enzyme also catalyzes the removal of 3'- phosphoryl groups from 3'- phosphoryl polynucleotides, deoxynucleoside 3'- monophosphates and deoxynucleoside 3'-diphosphates.

Applications:

- end-labeling DNA or RNA for probes and DNA sequencing;

- addition of 5'- phosphates to oligonucleotides to allow subsequent ligation;

- removal of 3'- phosphoryl groups. Concentration: 10 000 units/ml. **Reagents Supplied with Enzyme:** 10 × T4 Polynucleotide Kinase Buffer. Storage conditions: 10 mM Tris-HCl (pH 7.5);

50 mM NaCl; 0.1 mM EDTA; 1 mM DTT; 50% glycerol. Store at -20°C.

Unit Definition One unit is the amount of enzyme catalyzing the incorporation of 1 nmol of acid-insoluble [32 P] in 30 minutes at 37°C.

Unit Assay Conditions: 1 × T4 Polynucleotide Kinase Buffer, 66 μ M [γ - 32 P] ATP (5 × 10⁶ cpm/ μ mol) and 0.26 mM 5'- hydroxyl-terminated salmon sperm DNA.

Quality Control: Free of exonuclease, phosphatase, endonuclease and RNase activities.

T4 DNA Ligase

Isolated from E.coli strain that carries the cloned DNA Ligase gene from bacteriophage T4

Description: T4 DNA Ligase catalyzes the formation of a phosphodiester bond between juxtaposed 5' phosphate and 3' hydroxyl termini in duplex DNA or RNA. This enzyme will join blunt-end and cohesive end termini as well as repair single stranded nicks in duplex DNA, RNA, or DNA/RNA hybrids.

Concentration: 50 000 - 200 000 units/ml

Applications:

- cloning of restriction fragments;

- joining linkers and adapters to blunt-ended DNA;

Reagents Supplied with Enzyme: $10 \times T4$ DNA Ligase Buffer.

Storage conditions: 10 mM Tris-HCl (pH 7.5);

E319

E320

50 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 50% glycerol. Store at-20°C.

10000 u

50000 u

50000 u

250000 u

Unit Definition: One unit is defined as the amount of enzyme required to give 50% ligation of Hind III fragments of Lambda DNA (5' DNA termini concentration of 0.12 μ M [300 μ g/ml]) in 20 μ l of 1 \times T4 DNA Ligase Reaction Buffer in 30 minutes at 16°C.

Quality Control: Free of contaminating exonuclease and endonuclease.

Notes on Use: ATP is an essential cofactor for the reaction.

T4 DNA Ligase Concentrated

E330 Isolated from E.coli strain that carries the cloned DNA Ligase gene from bacteriophage T4

Description: T4 DNA Ligase catalyzes the formation of a phosphodiester bond between juxtaposed 5' phosphate and 3' hydroxyl termini in duplex DNA or RNA. This enzyme will join blunt-end and cohesive end termini as well as repair single stranded nicks in duplex DNA, RNA, or DNA/RNA hybrids.

Concentration: 2 000 000 units/ml.

Applications:

- cloning of restriction fragments;

- joining linkers and adapters to blunt-ended DNA.

Reagents Supplied with Enzyme: 10 × T4 DNA Ligase Buffer.

Storage conditions: 10 mM Tris-HCl (pH 7.5);

E329

50 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 50% glycerol. Store at -20°C.

Unit Definition: One unit is defined as the amount of enzyme required to give 50% ligation of Hind III fragments of Lambda DNA (5' DNA termini concentration of 0.12 μ M [300 μ g/ml]) in 20 μ l of 1 \times T4 DNA Ligase Reaction Buffer in 30 minutes at 16°C.

Quality Control: Free of contaminating exonuclease and endonuclease.

Notes on Use: ATP is an essential cofactor for the reaction.

65

Tli-Inorganic Pyrophosphatase

Isolated from E.coli strain that carries the cloned Inorganic pyrophosphatase gene from Thermococcus litoralis.

Description: Tli-Inorganic Pyrophosphatase catalyzes the hydrolysis of inorganic pyrophosphate to form orthophosphate:

 $P_2O_7^{-4}+H_2O \rightarrow 2HPO_4^{-2}$. Enzyme is extremely thermostable.

Concentration: 1 000 units/ml.

Reagents Supplied with Enzyme:

10 × Inorganic Pyrophosphatase Buffer.

Storage Conditions: 20 mM Tris-HCl (pH 7.6); 100 mM KCl; 0.1 mM EDTA; 0.2% Tween-20; 50% glycerol. **Store at -20°C.**

E315

E316

100 u

500 u

1000 u 5000 u

Unit Definition: One unit is the amount of enzyme that will generate 40 nmoles of phosphate per minute from pyrophosphate under standard reaction conditions (a 10 minute reaction at 75°C in 50 mM Tris-HCl(pH 8.5), 1 mM MgCl₂,0.32 mM PPi, reaction volume of 0.5 ml). Quality Control: Free of exonuclease and endonuclease activities

Uracil-DNA Glycosylase (UDG)

Isolated from a recombinant source

Description: E.coli uracil-DNA glycosylase (UDG) catalyzes the release of free uracil from uracil-containing DNA. UDG efficiently hydrolyzes uracil from single-stranded or double-stranded DNA, but not from oligomers (6 or fewer bases).

Applications:

- site-directed mutagenesis;

- as a probe for protein-DNA interaction studies.

Treatment of 1 µg of uracil-containing DNA with 1 unit of UDG for 10 minutes at 37°C renders the DNA incapable of being copied by DNA polymerase. The enzyme can be 95% heat killed by incubation at 95°C for 10 minutes.

Concentration: 20 000 – 50 000 units/ml.

Reagents Supplied with Enzyme: 10 × UDG Buffer.

Storage Conditios: 10 mM Tris-HCl (pH 7.6); 50 mM NaCl; 1 mM EDTA; 1 mM DTT; 50% glycerol. Store at -20°C.

E335

E336

Unit Definition: One unit is defined as the amount of enzyme that catalyzes the release of 60 pmol of uracil per minute from double-stranded, uracil-containing DNA. Activity is measured by release of [3 H]-uracil in a 50 μ l reaction containing 0.2 μ g DNA ($10^{4}-10^{5}$ cpm/ μ g) in 30 minutes at 37°C.

Notes on Use: UDG is active over a broad pH range with an optimum at pH 8.0, does not require divalent cation, and is inhibited by high ionic strength (>200 mM).

SibEnzyme

DNA Ladders

1 Kb DNA Ladder

M11 50 mkg M12 250 mkg

Description: The 1 Kb DNA Ladder has a number of proprietary plasmids which are digested to completion with appropriate restriction enzymes to yield 13 bands suitable for use as molecular weight standards for agarose gel electrophoresis.

Base Pairs	DNA Mass	Base Pairs	DNA Mass	Base Pairs	DNA Mass
10 000	60 ng	3000	200 ng	750	60 ng
8000	60 ng	2500	70 ng	500	30 ng
6000	60 ng	2000	60 ng	250	20 ng
5000	60 ng	1500	50 ng		
4000	60 ng	1000	210 ng		

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C.

Usage recommendation: The 1 Kb DNA Ladder was not designed for precise quantification of DNA mass, but can be used for

approximating the mass of DNA in comparably intense samples of similar size.

We recommend loading 1 mkg of the DNA Ladder per line.

50 Kb DNA Ladder

M29 50 mkg M30 250 mkg

Description: The 50 Kb DNA Ladder has a number of proprietary plasmids and phages DNA which are digested to completion with appropriate restriction enzymes to yield 17 bands suitable for use as molecular weight standards for agarose pulsed-field gel electrophoresis.

Base Pairs	DNA Mass	Base Pairs	DNA Mass	Base Pairs	DNA Mass
48502	70	6000	45	1500	35
39936	70	5000	45	1000	150
24730	70	4000	45	750	45
15206	70	3000	140	500	20
10000	45	2500	50	250	10
8000	45	2000	45		

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C.

Usage recommendation: The 50 Kb DNA Ladder was not designed for precise quantification of DNA mass, but can be used for approximating the mass of DNA in comparably intense samples of similar size.

We recommend loading 0,5-1 mkg of the DNA Ladder per line.

100 bp DNA Ladder

M15 50 mkg M16 250 mkg

Description: The 100 bp DNA Ladder has a number of proprietary plasmids which are digested to completion with appropriate restriction enzymes to yield 10 bands suitable for use as molecular weight standards for agarose gel electrophoresis.

Base Pairs	DNA Mass	Base Pairs	DNA Mass	Base Pairs	DNA Mass
1 000	190 ng	600	110 ng	200	40 ng
900	170 ng	500	130 ng	100	40 ng
800	150 ng	400	80 ng		
700	90 ng	300	40 ng		

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C.

Usage recommendation: The 100 bp DNA Ladder was not designed for precise quantification of DNA mass, but can be used for approximating the mass of DNA in comparably intense samples of similar size.

We recommend loading 1 mkg of the DNA Ladder per line.

100 bp + 50 bp DNA Ladder

M33 50 mkg M34 250 mkg

Description: The 100 bp + 50bp DNA Ladder has a number of proprietary plasmids which are digested to completion with appropriate restriction enzymes to yield 11 bands suitable for use as molecular weight standards for agarose gel electrophoresis.

	Base Pairs	DNA Mass	Base Pairs	DNA Mass	Base Pairs	DNA Mass
Ī	1 000	160 ng	600	100 ng	200	30 ng
ſ	900	140 ng	500	170 ng	100	30 ng
Ī	800	120 ng	400	70 ng	50	20 ng
ſ	700	110 ng	300	50 ng		

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C.

Usage recommendation: The 100 bp + 50 bp DNA Ladder was not designed for precise quantification of DNA mass, but can be used for approximating the mass of DNA in comparably intense samples of similar size.

We recommend loading 1 mkg of the DNA Ladder per line.

100 bp + 1.5 Kb DNA Ladder

M23 50 mkg M24 250 mkg

Description: The 100 bp + 1.5 Kb DNA Ladder has a number of proprietary plasmids which are digested to completion with appropriate restriction enzymes to yield 11 bands suitable for use as molecular weight standards for agarose gel electrophoresis.

Base Pairs	DNA Mass	Base Pairs	DNA Mass	Base Pairs	DNA Mass
1500	150 ng	700	70 ng	300	30 ng
1000	200 ng	600	80 ng	200	20 ng
900	120 ng	500	150 ng	100	20 ng
800	110 ng	400	50 ng		

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C.

Usage recommendation: The 100 bp + 1.5 Kb DNA Ladder was not designed for precise quantification of DNA mass, but can be used for approximating the mass of DNA in comparably intense samples of similar size.

We recommend loading 1 mkg of the DNA Ladder per line.

100 bp + 1.5 Kb + 3 Kb DNA Ladder

M27 50 mkg M28 250 mkg

Description: The 100 bp + 1.5 Kb + 3 Kb DNA Ladder has a number of proprietary plasmids which are digested to completion with appropriate restriction enzymes to yield 12 bands suitable for use as molecular weight standards for agarose gel electrophoresis.

Base Pairs	DNA Mass	Base Pairs	DNA Mass	Base Pairs	DNA Mass
3000	70 ng	800	120 ng	400	60 ng
1500	60 ng	700	80 ng	300	40 ng
1000	140 ng	600	90 ng	200	30 ng
900	130 ng	500	120 ng	100	30 ng

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C.

Usage recommendation: The 100 bp + 1.5 Kb + 3 Kb DNA Ladder was not designed for precise quantification of DNA mass, but can be used for approximating the mass of DNA in comparably intense samples of similar size.

We recommend loading 1 mkg of the DNA Ladder per line.

100 bp + 2 Kb + 3 Kb DNA Ladder

M25 50 mkg M26 250 mkg

Description: The 100 bp + 2 Kb + 3 Kb DNA Ladder has a number of proprietary plasmids which are digested to completion with appropriate restriction enzymes to yield 12 bands suitable for use as molecular weight standards for agarose gel electrophoresis.

Base Pairs	DNA Mass	Base Pairs	DNA Mass	Base Pairs	DNA Mass
3000	120 ng	800	110 ng	400	50 ng
2000	120 ng	700	70 ng	300	30 ng
1000	160 ng	600	80 ng	200	20 ng
900	120 ng	500	100 ng	100	20 ng

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C.

Usage recommendation: The 100 bp + 2 Kb + 3 Kb DNA Ladder was not designed for precise quantification of DNA mass, but can

be used for approximating the mass of DNA in comparably intense samples of similar size.

We recommend loading 1 mkg of the DNA Ladder per line.

Lambda DNA - Hind III Digest

M01 100 mkg M02 500 mkg

Description: The Hind III digest of lambda DNA yields 8 fragments suitable for use as molecular weight standards for agarose gel electrophoresis.

Length of the DNA fragments (Base Pairs)						
23130	6557	2322	564			
9416	4361	2027	125			

Concentration: 500 mkg/ml

Storage buffer (TE): 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA. **Store at -20°C. Usage recommendation:** Dilute in TE buffer (10 – 20 times) before loading.

We recommend loading 1 mkg of the DNA Ladder per line.

Lambda DNA - BssT1 I (Sty I) Digest

M05 100 mkg M06 500 mkg

Description: The BssT1 I (Sty I) digest of lambda DNA yields 11 fragments suitable for use as molecular weight standards for agarose gel electrophoresis.

Length of the DNA fragments (Base Pairs)						
19329 4254 1882 421						
7743	3472	1489	74			
6223	2690	925				

Concentration: 500 mkg/ml

Storage buffer (TE): 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA. Store at -20°C. Usage recommendation: Dilute in TE buffer (10 – 20 times) before loading.

We recommend loading 1 mkg of the DNA Ladder per line.

Lambda DNA - Bme18 I (Ava II) Digest

M03 100 mkg M04 500 mkg

Description: The Bme18 I (Ava II) digest of lambda DNA yields 36 fragments suitable for use as molecular weight standards for agarose gel electrophoresis.

Length of the DNA fragments (Base Pairs)						
8126	2134	985	511	272	67	
6555	2005	974	433	242	45	
6442	1951	894	398	215	42	
3676	1612	597	345	151	32	
2605	1420	590	310	88	28	
2555	1284	513	308	73	23	

Concentration: 500 mkg/ml

Storage buffer (TE): 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA. Store at -20°C. Usage recommendation: Dilute in TE buffer (10 – 20 times) before loading.

We recommend loading 1 mkg of the DNA Ladder per line.

Lambda DNA - Bgl I Digest

M17 100 mkg M18 500 mkg

Description: The Bgl I digest of lambda DNA yields 30 fragments suitable for use as molecular weight standards for agarose gel electrophoresis.

	Length of the DNA fragments (Base Pairs)						
16179	1650	1138	562	366	126		
9649	1446	790	499	267	115		
3009	1441	773	489	210	91		
2481	1249	669	447	186	51		
2256	1203	621	404	126	9		

Concentration: 500 mkg/ml

Storage buffer (TE): 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA. Store at -20°C. Usage recommendation: Dilute in TE buffer (10 – 20 times) before loading.

We recommend loading 1 mkg of the DNA Ladder per line.

Lambda DNA – BstE II Digest

M09 100 mkg M10 500 mkg

Description: The BstEII digest of lambda DNA yields 14 fragments suitable for use as molecular weight standards for agarose gel electrophoresis.

cicciophoresis.							
Length of the DNA fragments (Base Pairs)							
8454	5686	3675	1371	224			
7242	4822	2323	1264	117			
6369	4324	1929	702				

Concentration: 500 mkg/ml

Storage buffer (TE): 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA. Store at -20°C. Usage recommendation: Dilute in TE buffer (10 – 20 times) before loading.

We recommend loading 1 mkg of the DNA Ladder per line.

pBR322 DNA - BsuR I (HaeIII) Digest

M21 50 mkg M22 250 mkg

Description: The BsuR I digest of pBR322 DNA yields 22 fragments suitable for use as molecular weight standards for agarose gel electrophoresis.

electrophotesis.							
Length of the DNA fragments (Base Pairs)							
587	434	192	104	57	11		
540	267	184	89	51	8		
502	234	124	80	21			
458	213	123	64	18			

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C. Usage recommendation: We recommend loading 1 mkg of the DNA Ladder per line.

pBR322 DNA - Alu I Digest

M19 50 mkg M20 250 mkg

Description: The Alu I digest of pBR322 DNA yields 9 fragments suitable for use as molecular weight standards for agarose gel electrophoresis.

Length of the DNA fragments (Base Pairs)				
908	521	257		
659	403	226		
656	281	100		

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C. Usage recommendation: We recommend loading 1 mkg of the DNA Ladder per line.

pUC19 DNA - Kzo9 I (Sau3AI) Digest

M13 50 mkg M14 250 mkg

Description: The Kzo9 I digest of pUC19 DNA yields 15 fragments suitable for use as molecular weight standards for agarose gel electrophoresis.

Length of the DNA fragments (Base Pairs)					
955	141	46	12		
585	105	36	11		
341	78	18	8		
258	75	17			

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C. Usage recommendation: We recommend loading 1 mkg of the DNA Ladder per line.

pUC19 DNA - Msp I Digest

M07 50 mkg M08 250 mkg

Description: The Msp I digest of pUC19 DNA yields 12 bands suitable for use as molecular weight standards for agarose gel electrophoresis.

Length of the DNA fragments (Base Pairs)					
501	331	147	67		
489	242	111	34		
404	190	110	26		

Concentration: 200 mkg/ml

Storage buffer: 10 mM Tris-HCl (pH 8.0), 1.0 mM EDTA, 50 mM NaCl. Store at -20°C. Usage recommendation: We recommend loading 1 mkg of the DNA Ladder per line.

SibEnzyme

Plasmid and Phage DNAs

Lambda DNA (dam-, dcm-)

D10 500 mkg

D03

D04

D09

500 mkg

50 mkg

10 mkg

250 mkg

Isolated from bacteriophage lambda (cl857ind 1 Sam 7) obtained from heat inducible lysogen

E.coli strain (dam-, dcm-)

Description: Duplex DNA is 48502 base pairs in length. The molecular weight is 31.5x10⁶ daltons.

Concentration: 500 mkg/ml

Storage Buffer: 10 mM Tris-HCl (pH8.0) and 1 mM EDTA. Store at -20°C.

Lambda DNA

D11 Isolated from bacteriophage lambda (cl857ind 1 Sam 7) obtained from heat inducible lysogen

E.coli strain (dam+, dcm+).

Description: Duplex DNA is 48502 base pairs in lenght. The molecular weight is 31.5x10⁶ daltons.

Concentration: 500 mkg/ml

Storage Buffer: 10 mM Tris-HCl (pH 8.0) and 1 mM EDTA. Store at -20°C.

T7 Phage DNA

D02 500 mkg Isolated from T7 phage obtained from infected E.coli strain

Description: Duplex DNA is 39936 base pairs in lenght. The molecular weight is 26x10⁶ daltons.

Concentration: 500 mkg/ml. Storage Buffer: 10 mM Tris-HCl (pH 8.0) and 1 mM EDTA. Store at -20°C.

pBR322DNA

Isolated from E.coli XL1-Blue (dam+, dcm+).

Description: pBR322 is commonly used plasmid cloning vector in E.coli. The molecule is a double-stranded circle, 4361 base pairs in lenght. pBR322 contains the genes for resistance to ampicillin and tetracycline, and may be amplified with chloramphenicol. The molecular weight of pBR322 is 2.83x10⁶ daltons.

Concentration: 200 mkg/ml

Storage Buffer: 10 mM Tris-HCl (pH8.0) and 1 mM EDTA. Store at -20°C.

pHspAI2/GsaI DNA

pHspAI2 is isolated from E.coli (dam+,dcm+)

by a standard plasmid purification procedure.

Description: DNA pHspAI2/GsaI is a linearized plasmid pHspAI2, which includes a gene of DNA-methyltransferase M.HspAI

(recognition sequence 5'-GCGC-3') and contains a unique GlaI canonical site

5'-G(5mC)G(5mC)-3'/3'-(5mC)G(5mC)G-5'.

Concentration: 200 mkg/ml

Storage Buffer: 10 mM Tris-HCl (pH8.0) and 1 mM EDTA. Store at -20°C.

pUC19 DNA **D05** 50 mkg **D**06 250 mkg isolated from E.coli XL1-Blue (dam+, dcm+)

Description: pUC19 is commonly used plasmid cloning vector in E.coli. The molecule is a small double-stranded circle, 2686 base pairs in lenght, and has a high copy number. pUC19 carries a 54 base-pair multiple cloning site polylinker that contains unique sites for 13 different hexanucleotide-specific restriction endonucleases. The molecular weight of pUC19 is 1.75x10⁶ daltons

Concentration: 200 mkg/ml

Storage Buffer: 10 mM Tris-HCl (pH8.0) and 1 mM EDTA. Store at -20°C.

Human Genomic DNA

Genomic DNA HeLa

D07 10 mkg

Isolated from HeLa cervix adenocarcinoma cells. Description: Human female HeLa genomic DNA.

Cells were grown to confluency in DMEM – 90%, plus fetal bovine serum – 10%.

Genomic DNA was isolated by a standard protocol [1].

Concentration: 200 mkg/ml.

Quality Control: Purified free of contaminating proteins and RNA Storage Buffer: 10 mM Tris-HCl (pH 7.8), 1 mM EDTA. Store at -20°C.

Note: Avoid multiple freeze/thaw cycles.

1. Sambrook J. and Russell D. (2001) Molecular Cloning: A Laboratory Manual, (3rd ed.), pp. 6.4-6.12. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

Genomic DNA Jurkat

D08

10 mkg

Isolated from Jurkat acute T-cell leukemia cells.

Description: Human male Jurkat genomic DNA.

Cells were grown to confluency in RPMI-1640 – 90%, plus fetal bovine serum – 10%.

Genomic DNA was isolated by a standard protocol [1].

Concentration: 200 mkg/ml.

Quality Control: Purified free of contaminating proteins and RNA Storage Buffer: 10 mM Tris-HCl (pH 7.8), 1 mM EDTA. Store at -20°C.

Note: Avoid multiple freeze/thaw cycles.

1. Sambrook J. and Russell D. (2001) Molecular Cloning: A Laboratory Manual, (3rd ed.), pp. 6.4-6.12. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

Genomic DNA L-68

D014 10 mkg

Isolated from L-68 fibroblast cells from lung.

Description: Human embryo L-68 genomic DNA.

Cells were grown to confluency in DMEM – 90%, plus fetal bovine serum – 10%.

Genomic DNA was isolated by a standard protocol [1].

Concentration: 200 mkg/ml.

Quality Control: Purified free of contaminating proteins and RNA Storage Buffer: 10 mM Tris-HCl (pH 7.8), 1 mM EDTA. Store at -20°C.

Note: Avoid multiple freeze/thaw cycles.

1. Sambrook J. and Russell D. (2001) Molecular Cloning: A Laboratory Manual, (3rd ed.), pp. 6.4-6.12. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

Genomic DNA Raji

D13

10 mkg

Isolated from Raji Burkitt's lymphoma cells.

Description: Human male Raji genomic DNA.

Cells were grown to confluency in RPMI-1640 – 90%, plus fetal bovine serum – 10%.

Genomic DNA was isolated by a standard protocol [1].

Concentration: 200 mkg/ml.

Quality Control: Purified free of contaminating proteins and RNA Storage Buffer: 10 mM Tris-HCl (pH 7.8), 1 mM EDTA. Store at -20°C.

Note: Avoid multiple freeze/thaw cycles.

1. Sambrook J. and Russell D. (2001) Molecular Cloning: A Laboratory Manual, (3rd ed.), pp. 6.4-6.12. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

Genomic DNA U-937

D12

10 mkg

Isolated from U-937 histiocytic lymphoma cells.

Description: Human male U-937 genomic DNA.

Cells were grown to confluency in RPMI-1640 – 90%, plus fetal bovine serum – 10%.

Genomic DNA was isolated by a standard protocol [1].

Concentration: 200 mkg/ml.

Quality Control: Purified free of contaminating proteins and RNA Storage Buffer: 10 mM Tris-HCl (pH 7.8), 1 mM EDTA. Store at -20°C.

Note: Avoid multiple freeze/thaw cycles.

1. Sambrook J. and Russell D. (2001) Molecular Cloning: A Laboratory Manual, (3rd ed.), pp. 6.4-6.12. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

dNTPs(enzymatic)

dATP

40 mM water N011 5 μmoles solution N012 25 μmoles

Description: 2'-deoxyadenosine 5'-triphosphate sodium salt

Concentration: 40 mM

Method of production: enzymatic synthesis.

dATP are Qualified free of nucleases and phosphatases.

15 Kb and longer DNA fragments may be amplified in PCR with this

dNTP(enzymatic). **Store at -20°C.**

dCTP

40 mM water N013 5 μmoles solution N014 25 μmoles

Description: 2'-deoxycytidine 5'-triphosphate sodium salt

Concentration: 40 mM

Method of production: enzymatic synthesis.

dCTP are Qualified free of nucleases and phosphatases.

15 Kb and longer DNA fragments may be amplified in PCR with this

dNTP(enzymatic). **Store at -20°C.**

dGTP

40 mM water N015 5 μmoles solution N016 25 μmoles

Description: 2'-deoxyguanosine 5'-triphosphate sodium salt

Concentration: 40 mM

Method of production: enzymatic synthesis.

dGTP are Qualified free of nucleases and phosphatases.

15 Kb and longer DNA fragments may be amplified in PCR with this

dNTP(enzymatic). **Store at -20°C.**

dTTP

40 mM water N017 5 μmoles solution N018 25 μmoles

Description: 2'-deoxythymidine 5'-triphosphate sodium salt

Concentration: 40 mM

Method of production: enzymatic synthesis.

dTTP are Qualified free of nucleases and phosphatases.

15 Kb and longer DNA fragments may be amplified in PCR with this

dNTP(enzymatic). **Store at -20°C.**

dUTP

100 mM water N031 5 μmoles solution N032 25 μmoles

Description: 2'-deoxyuridine 5'-triphosphate sodium salt

Concentration: 100 mM

 $\label{lem:method of production: enzymatic synthesis.}$

dUTP are Qualified free of nucleases and phosphatases.

15 Kb and longer DNA fragments may be amplified in PCR with this

dNTP(enzymatic). **Store at -20°C.**

dNTP Mix

0,5 µmol of each
Water solution

N024

1 ml

Description: Deoxynucleotide solution mix is an equimolar solution of ultrapure dATP, dCTP, dGTP and dTTP, each at a final concentration of 0,5 mM.

Quantity: 1.0 ml contains $0.5 \mu mol$ of each dATP, dCTP, dGTP and dTTP. **Application:** For use in molecular biology and biotechnology, including PCR, long-PCR, and for labeling and sequencing DNA. PCR-diagnostics for medicine.

Quality: Molecular Biology Grade.

Functional test: The product has been tested for receiving products with length more than 15,000 base pair nucleotides with T7 phage DNA as a template.

dNTP Mix

2,5 μmol of each
40 mM water
N026
1 ml

Description: Deoxynucleotide solution mix is an equimolar solution of ultrapure

dATP, dCTP, dGTP and dTTP, each at a final concentration of 2,5 mM. **Quantity:** 1.0 ml contains 2,5 μmol of each dATP, dCTP, dGTP and dTTP. **Application:** For use in molecular biology and biotechnology, including PCR, long-PCR, and for labeling and sequencing DNA. PCR-diagnostics for medicine.

Quality: Molecular Biology Grade.

Functional test: The product has been tested for receiving products with length more than 15,000 base pair nucleotides with T7 phage DNA as a template.

Store at -20°C.

dNTP Mix

4 μmol of each
40 mM water
solution

N027
1 ml

Description: Deoxynucleotide solution mix is an equimolar solution of ultrapure

dATP, dCTP, dGTP and dTTP, each at a final concentration of 4 mM.

Quantity: 1.0 ml contains 4 µmol of each dATP, dCTP, dGTP and dTTP.

Application: For use in molecular biology and biotechnology, including PCR, long-PCR, and for labeling and sequencing DNA. PCR-diagnostics for medicine. **Quality:** Molecular Biology Grade.

Functional test: The product has been tested for receiving products with length more than 15,000 base pair nucleotides with T7 phage DNA as a template.

Store at -20°C.

dNTP Mix

10 µmol of each
40 mM water
80lution
80lution
11 µmol of each
10 µmo

Description: Deoxynucleotide solution mix is an equimolar solution of ultrapure

dATP, dCTP, dGTP and dTTP, each at a final concentration of 10 mM.

Quantity: 1.0 ml contains 10 μmol of each dATP, dCTP, dGTP and dTTP. **Application:** For use in molecular biology and biotechnology, including PCR,

long-PCR, and for labeling and sequencing DNA. PCR-diagnostics for medicine.

Quality: Molecular Biology Grade.

Functional test: The product has been tested for receiving products with length more than 15,000 base pair nucleotides with T7 phage DNA as a template.

Store at -20°C.

dNTP solution set (enzymatic) 40 mM of each Water solution. N030 4 x 25 μmoles

Description: Deoxynucleotide solution set: Four separate solutions of ultrapure nucleotides (dATP, dCTP, dGTP and dTTP). Each nucleotide is supplied at a concentration of 40~mM aqueous solution .

Application: For use in molecular biology and biotechnology, including PCR, long-PCR, and for labeling and sequencing DNA. PCR-diagnostics for medicine. **Quality:** Molecular Biology Grade.

Functional test: The product has been tested for receiving products with length more than 15,000 base pairs with T7 phage DNA as a template.

dNTPs(chemical)

dATP

100 mM water N001 5 μmoles solution. N002 25 μmoles

Description: 2'-deoxyadenosine 5'-triphosphate lithium salt

Concentration: 100 mM

Method of production: chemical synthesis.

Purity of dATP is 98-99% according to HPLC analysis (Column ProntoSIL-120-

5-C18AQ).

The product is free of DNases, RNases and phosphatases. Coefficient of extinction: 15200 M^{-1} X cm⁻¹ at λ_{max} =259 nm

Functional test: The product has been tested in PCR for 0.1-15 kb fragments in

length.

Store at -20°C.

dCTP

100 mM water N003 5 μmoles solution. N004 25 μmoles

Description: 2'-deoxyadenosine 5'-triphosphate lithium salt

Concentration: 100 mM

Method of production: chemical synthesis.

Purity of dATP is 98-99% according to HPLC analysis (Column ProntoSIL-120-

5-C18AQ).

The product is free of DNases, RNases and phosphatases. Coefficient of extinction: 9300 M^{-1} X cm⁻¹ at λ_{max} =271 nm

Functional test: The product has been tested in PCR for 0.1-15 kb fragments in

length.

Store at -20°C.

dGTP

100 mM water N005 5 μmoles solution. N006 25 μmoles

Description: 2'-deoxyadenosine 5'-triphosphate lithium salt

Concentration: 100 mM

Method of production: chemical synthesis.

Purity of dATP is 98-99% according to HPLC analysis (Column ProntoSIL-120-

5-C18AQ).

The product is free of DNases, RNases and phosphatases. Coefficient of extinction: 13700 M^{-1} X cm⁻¹ at λ_{max} =253 nm

Functional test: The product has been tested in PCR for 0.1-15 kb fragments in

length.

Store at -20°C.

dTTP

100 mM water N007 5 μmoles solution. N008 25 μmoles

Description: 2'-deoxyadenosine 5'-triphosphate lithium salt

Concentration: 100 mM

Method of production: chemical synthesis.

Purity of dATP is 98-99% according to HPLC analysis (Column ProntoSIL-120-

5-C18AQ).

The product is free of DNases, RNases and phosphatases. Coefficient of extinction: 9600 M^{-1} X cm⁻¹ at λ_{max} =267 nm

Functional test: The product has been tested in PCR for 0.1-15 kb fragments in

length.

Store at -20°C.

dNTP Mix

0,5 µmol of each
100 mM water N020 1 ml
solution.

Description: Deoxynucleotide solution mix is an equimolar solution of ultrapure

dATP, dCTP, dGTP, dTTP, each at a final concentration of 0,5 mM.

Concentration: 100 mM

Method of production: chemical synthesis.

Quantity: 1.0 ml contains 0,5 μmol of each dATP, dCTP, dGTP and dTTP. **Application:** For use in molecular biology and biotechnology, including PCR, long-PCR, and for labeling and sequencing DNA. PCR-diagnostics for medicine.

Quality: Molecular Biology Grade.

Functional test: The product has been tested for receiving products with length more than 15,000 base pair nucleotides with T7 phage DNA as a template.

dNTP Mix

NEV

2,5 µmol of each 100 mM water solution.

N021

1 ml

Description: Deoxynucleotide solution mix is an equimolar solution of ultrapure

dATP, dCTP, dGTP and dTTP, each at a final concentration of 2,5 mM.

Concentration: 100 mM

Method of production: chemical synthesis.

Quantity: 1.0 ml contains 2,5 μmol of each dATP, dCTP, dGTP and dTTP. **Application:** For use in molecular biology and biotechnology, including PCR, long-PCR, and for labeling and sequencing DNA. PCR-diagnostics for medicine.

Quality: Molecular Biology Grade.

Functional test: The product has been tested for receiving products with length more than 15,000 base pair nucleotides with T7 phage DNA as a template.

Store at -20°C.

dNTP Mix

NEW

4 μmol of each 100 mM water solution.

N023

1 ml

Description: Deoxynucleotide solution mix is an equimolar solution of ultrapure

dATP, dCTP, dGTP and dTTP, each at a final concentration of 4 mM.

Concentration: 100 mM

Method of production: chemical synthesis.

Quantity: 1.0 ml contains 4 μmol of each dATP, dCTP, dGTP and dTTP. **Application:** For use in molecular biology and biotechnology, including PCR, long-PCR, and for labeling and sequencing DNA. PCR-diagnostics for medicine.

Quality: Molecular Biology Grade.

Functional test: The product has been tested for receiving products with length more than 15,000 base pair nucleotides with T7 phage DNA as a template.

Store at -20°C.

dNTP Mix

10 µmol of each 100 mM water solution.

N022

1 ml

Description: Deoxynucleotide solution mix is an equimolar solution of ultrapure

dATP, dCTP, dGTP and dTTP, each at a final concentration of 10 mM.

Concentration: 100 mM

Method of production: chemical synthesis.

Quantity: 1.0 ml contains 10 μ mol of each dATP, dCTP, dGTP and dTTP. **Application:** For use in molecular biology and biotechnology, including PCR, long-PCR, and for labeling and sequencing DNA. PCR-diagnostics for medicine.

Quality: Molecular Biology Grade.

Functional test: The product has been tested for receiving products with length more than 15,000 base pair nucleotides with T7 phage DNA as a template.

Store at -20°C.

dNTP solution set (enzymatic)

100 mM of each water solution.

N028

4 x 25 µmoles

Description: Deoxynucleotide solution set: Four separate solutions of ultrapure nucleotides (dATP, dCTP, dGTP and dTTP). Each nucleotide is supplied at a concentration of 100 mM aqueous solution .

Concentration: 100 mM

Method of production: chemical synthesis.

Application: For use in molecular biology and biotechnology, including PCR, long-PCR, and for labeling and sequencing DNA. PCR-diagnostics for medicine.

Quality: Molecular Biology Grade.

Functional test: The product has been tested for receiving products with length more than 15,000 base pairs with T7 phage DNA as a template.

Substrates

S005

100 mkl

S-Adenosyl – L - methionine (SAM)

Source: fermentative synthesis with subsequent purification

Description: S-Adenosyl-L-methionine (SAM) is a substrate for methyltransferases and a cofactor for some restriction endonucleases. SAM

provided in 5 mM H₂SO₄ and 10% EtOH.

Formula: C₁₅H₂₃N₆O₅S Molecular weight: 399,5 Concentration: 32 mM

Use and Storage: Store at -20°C.

The SAM solution should be thawed on ice and added into the reaction mixture immediately before the incubation. For use in a methylation reaction the SAM

should be diluted to a final concentration of 80 µM.

Quality Control: the SAM is tested in a reaction of methylation of phage λ DNA

with DNA-methyltransferase M.HspAI (SE #003).

Kits

DNA Quick Ligation Kit

K006

20

reactions

Description: The Quick Ligation Kit includes:

1. Quick T4 DNA Ligase (recombinant, 2000 u/μl) - 20μl

2. 2 x Quick Ligation Buffer - 200µl (132 mM Tris-HCl (pH 7.6 at 25°C); 20 mM MgCl₂, 2 mM DTT; 2 mM ATP; 15% PEG 6000).

Mix thoroughly before use.

Ligation reaction protocol (for 20 µl)

1 Mix

H₂O - calculated quantity

2 x Quick Ligation Buffer - 10µl

Add DNA

Add 1 µl Quick T4 DNA Ligase

- 2. Incubate at room temperature (+25°C) for 5 min.
- 3. Cool the mixture on ice, store at -20°C.

Notes on Use: Before the first use the 2 x SE-DNA Quick Ligation Buffer should be divided into small aliquots and store at -20°C.

Avoid defrosting this Buffer more than 2-3 times.

The Buffer can be stored at +4°C during 7 days.

The efficiency of ligation starts to decrease after 2 hours of incubation and is reduced by up to 75% if the reaction is allowed to go overnight at 25°C.

Before using the products of a Quick Ligation reaction for electrotransformation, it is necessary to reduce the PEG concentration.

Store at -20°C.

GLAD-PCR assay Kit

K009

200

reactions

GLAD-PCR assay Kit was developed for 200 GLAD-PCR reactions.

The following reagents are supplied with this product:

- 1. dH₂O -3 mL,
- 2. 10x SE TMN Buffer 150 μL,
- 3. DMSO $30 \mu L$,
- 4. BSA, $10 \text{ mg/mL} 80 \mu\text{L}$,
- 5. GlaI (10 u.a./ μ L) 10 μ L,
- 6. Universal adapter, double-stranded (10 μM) 100 μL,
- 7. ATP, 10 mM 100 μL,
- 8. DNA ligase T4 concentrated (2000 u.a./μL) 10 μL,
- 9. 10X SE GLAD Buffer 400 μL,
- 10. MgCl₂, 50 mM 110 μL,
- 11. dNTP Mix, 10 mM each 80 μL,
- 12. SP Taq DNA Polymerase, 5 u.a./μL 15 μL,
- 13. Control DNA Raji, 9 ng/μL 70 μL,
- 14. Control DNA HeLa, 9 ng/μL 70 μL,
- 15. Control DNA Lambda, $\tilde{9}$ ng/ μ L $\tilde{70}$ μ L,
- 16. Control URB1 mix (oligonucleotide primers + TaqMan probe, 10 μM each) 25 $\mu L,$
- 17. Control CEBPD mix (oligonucleotide primers + TaqMan probe, 10 μM each) 25 μL

Additional services are available with GLAD-PCR assay Kit order:

- 1. Primers and TaqMan probes design (free for up to 3 RCGY sites);
- 2. Primes and TaqMan probes synthesis price upon request;
- 3. GLAD PCR assay with synthesized oligonucleotides on selected DNA from malignant cell lines (see SE list of products) price upon request.

Reaction requires:

- 1. DNA sample,
- 2. Genome primer and TaqMan probe designed for DNA region of interest,
- 3. Hybrid primer (includes constant part complimentary to universal adapter and tetranucleotide part which is complimentary to DNA at the point of GlaI hydrolysis). Hybrid primers may be ordered by request (see Cat.# K010/1, K010/3, K010/5 and K010/32).

All reagents for the control experiments are included.

The time of assay including DNA hydrolysis, ligation of the adaptor and PCR is less than 4 hours.

K010/1 K010/3 K010/5 K010/32 200 reactions

GLAD-PCR assay Kit was developed for 200 GLAD-PCR reactions.

The following reagents are supplied with this product:

- 1. dH₂O -3 mL,
- 2. 10x SE TMN Buffer 150 μL,
- 3. DMSO 30 μL,
- 4. BSA, $10 \text{ mg/mL} 80 \mu L$,
- 5. GlaI (10 u.a./ μ L) 10 μ L,
- 6. Universal adapter, double-stranded (10 μM) 100 μL,
- 7. ATP, 10 mM 100 μL,
- 8. DNA ligase T4 concentrated (2000 u.a./μL) 10 μL,
- 9. 10X SE GLAD Buffer 400 μ L,
- 10. MgCl₂, 50 mM 110 μL,
- 11. dNTP Mix, 10 mM each 80 μL,
- 12. SP Taq DNA Polymerase, 5 u.a./μL 15 μL,
- 13. Control DNA Raji, 9 ng/μL 70 μL,
- 14. Control DNA HeLa, 9 ng/μL 70 μL,
- 15. Control DNA Lambda, 9 ng/μL 70 μL,
- 16. Control URB1 mix (oligonucleotide primers + TaqMan probe, 10 μM each) 25 μL,
- 17. Control CEBPD mix (oligonucleotide primers + TaqMan probe, 10 μM each) 25 μL
- 18. Hybrid primers¹ (10 μ M) 170 μ L.
- ¹ You can choose 1 (Cat.# K010/1), 3 (Cat.# K010/3), 5 (Cat.# K010/5) of hybrid primers, or order full range of 32 hybrid primers (Cat.# K010/1).

The list of 32 hybrid primers (HP1-HP32) you can find in the Instruction manual

Additional services are available with GLAD-PCR assay Kit order:

- 1. Primers and TaqMan probes design (free for up to 3 RCGY sites);
- 2. Primes and TaqMan probes synthesis price upon request;
- 3. GLAD PCR assay with synthesized oligonucleotides on selected DNA from malignant cell lines (see SE list of products) price upon request.

Reaction requires:

- 1. DNA sample.
- 2. Genome primer and TaqMan probe designed for DNA region of interest,
- 3. Hybrid primer (includes constant part complimentary to universal adapter and tetranucleotide part which is complimentary to DNA at the point of GlaI hydrolysis). Hybrid primers may be ordered by request. The Kits K010/1, K010/3, K010/5 and K010/32 includes 1, 3, 5 of chosen primers, or full range of 32 hybrid primers, respectively. The concentration of each hybrid primer is 10 μ M, quantity 170 μ L. All reagents for the control experiments are included. The time of assay including DNA hydrolysis, ligation of the adaptor and PCR is less than 4 hours.

Buffers composition

Cat #	Buffer	Contents ×1
B001	<u>B</u> :	10 mM Tris-HCl (pH 7.6 at 25° C); 10 mM MgCl ₂ ; 1 mM DTT.
B002	<u>G</u> :	10 mM Tris-HCl (pH 7.6 at 25° C); 10 mM MgCl ₂ ; 50 mM NaCl; 1 mM DTT.
B003	<u>O</u> :	50 mM Tris-HCl (pH 7.6 at 25° C); 10 mM MgCl ₂ ; 100 mM NaCl; 1 mM DTT.
B004	<u>W</u> :	10 mM Tris-HCl (pH 8.5 at 25° C); 10 mM MgCl ₂ ; 100 mM NaCl; 1 mM DTT.
B005	<u>Y</u> :	33 mM Tris- acetate (pH 7.9 at 25° C); 10 mM magnesium acetate; 66 mM potassium acetate; 1 mM DTT.
B006	<u>2W</u> :	20 mM Tris-HCl (pH 8.5 at 25° C); 10 mM MgCl ₂ ; 200 mM NaCl; 1 mM DTT.
B007	<u>K</u> :	10 mM Tris-HCl (pH 7.6 at 25° C); 10 mM MgCl ₂ ; 100 mM KCl; 1 mM DTT.
B008	<u>2K</u> :	10 mM Tris-HCl (pH 7.6 at 25° C); 10 mM MgCl ₂ ; 200 mM KCl; 1 mM DTT.
B009	Fael:	33 mM Tris- acetate (pH 8.3 at 25° C); 10 mM magnesium acetate; 66 mM potassium acetate; 1 mM DTT.
B010	AbsI:	10 mM Tris-HCl (pH 9.0 at 25° C); 10 mM MgCl ₂ ; 50 mM KCl; 1 mM DTT.
B020	AoxI	10 mM Tris-HCl (pH 7.5 at 25°C); 200 mM KCl; 0,1 mM EDTA, 7 mM 2-mercaptoethanol; 200 μg/ml BSA, 50% glycerol.
B011	EcoRI:	100 mM Tris-HCl (pH 7.6 at 25° C); 10 mM MgCl ₂ ; 50 mM NaCl; 1 mM DTT.
B012	BisI	10 mM Tris-HCl (pH 9.0 at 25° C); 10 mM MgCl ₂ ; 150 mM KCl; 1 mM DTT.
B016	<u>Mall</u>	20 mM Tris-HCl (pH 9.0 at 25° C); 10 mM MgCl ₂ ; 150 mM NaCl; 1 mM DTT.
B017	N·Bst9I:	10 mM Tris-HCl (pH 8.5 at 25° C); 10 mM MgCl ₂ ; 150 mM KCl; 1 mM DTT.
B019	PcsI	10 mM Tris-HCl (pH 8.3 at 25° C); 20 mM NaCl; 3 mM MgCl ₂ ; 1 mM DTT.
B018	RigI:	10 mM Tris-HCl (pH 8.5 at 25° C); 5 mM MgCl ₂ ; 1 mM DTT
B021	ROSE	10 mivi 1115-11C1 (p11 8.3 at 23 °C), 3 mivi 1vigC12, 1 mivi D1 1
B022	GLAD:	50 mM Tris-SO ₄ , pH 9.0 at 25°C; 30 mM KCl; 10 mM [NH ₄] ₂ SO ₄
B301	T4-Polynucleotide Kinase:	50 mM Tris-HCl (pH 7.6 at 25°C); 10 mM MgCl ₂ ; 5 mM DTT.
B302	T4-DNA Ligase:	50 mM Tris-HCl (pH 7.8 at 25°C); 10 mM MgCl ₂ ;10 mM DTT; 1 mM ATP. Storage conditions: by small portions avoiding repeated defrosting to prevent ÀTP decomposition.
B303	T4-RNA Ligase:	50 mM Tris-HCl (pH 7.8 at 25°C); 10 mM MgCl ₂ ; 10 mM DTT; 1 mM ATP.
B304	DNA polymerase I E.coli	50 mM Tris-HCl (pH 7.6 at 25°C); 10 mM MgCl ₂ ; 5 mM DTT.
B309	(Klenow Fragment): Hot Start Taq DNA-	67 mM Tris-HCl (pH 8.8 at 25 C), 16.6 mM (NH ₄) ₂ SO ₄ , 0.01 % Tween-20.
D 30 <i>9</i>	polymerase:	Supplementary material is 50 mM MgCl ₂ .
B310	Pfu DNA- polymerase:	20 mM Tris-HCl (pH 8.8 at 25° C), 10 mM KCl, 10 mM (NH ₄) ₂ SO ₄ , 2 mM MgSO ₄ , 0.1% Triton X-100.
B321	AS (Ammonium Sulfate):	67 mM Tris-HCl (pH 8.8 at 25 C), 16.6 mM (NH ₄) ₂ SO ₄ , 0.01 % Tween-20. Supplementary material is 50 mM MgCl ₂ .
B305	Taq-DNA- polymerase, TaqSE-DNA- polymerase:	60 mM Tris-HCl (pH 8.5 at 25°C); 1.5 mM MgCl ₂ ; 25 mM KCl; 10 mM 2- mercaptoethanol; 0.1% Triton X-100.
B306	Taq-DNA- polymerase (Mg ²⁺ – free):	60 mM Tris-HCl (pH 8.5 at 25°C); 25 mM KCl; 10 mM 2- mercaptoethanol; 0.1% Triton X-100.
B311 B319	T4- DNA- polymerase: T7- RNA- polymerase:	67 mM Tris-HCl (pH 8.8 at 25°C); 6.7 mM MgCl ₂ ; 16.7 mM (NH ₄) ₂ SO ₄ ; 1 mM DTT. 50 mM Tris-HCl (pH 7.5 at 25°C); 6 mM MgCl ₂ ; 10 mM DTT; 2 mM spermidine.
B319 B312	M-MuLV reverse	50 mM Tris-HCl (pH 7.3 at 25°C); 6 mM MgCl ₂ ; 10 mM DTT; 2 mM spermidine. 50 mM Tris-HCl (pH 8.3 at 25°C); 75 mM KCl; 3 mM MgCl ₂ , 10 mM DTT.
2012	transcriptase	30 mm 1110 1101 (pri 0.3 at 2.3 °C), 73 mm 1 KC1, 3 mm 1 MgC12, 10 mm D11.
B313	Inorganic pyrophosphatase	50 mM Tris-HCl (pH 8.5 at 25° C); 1 mM MgCl ₂
B314	BAL-31 nuclease:	20 MM Tris-HCl (pH 8.0 at 25°C); 600 mM NaCl; 12 mM CaCl ₂ ; 12 mM MgCl ₂ ; 1 mM EDTA.
B315	Mung Bean nuclease	50 mM sodium acetate; 30 mM NaCl; 1 mM ZnSO ₄ ; (pH 5.0 at 25°C).
B316	Exonuclease III:	50 mM Tris-HCl (pH 7.6 at 25°C); 1 mM MgCl ₂ .
B317	Endonuclease I:	20 mM Glycin -NaOH (pH 9.5 at 25° C); 25 mM MgCl ₂ ; 100mM NaCl; 1 mM 2- mercaptoethanol.
B318	<u>Uracil-DNA-glycosylase</u> :	20 mM Tris-HCl (pH 8.0 at 25° C); 1 mM EDTA; 1 mM DTT.
B003	Alkaline phosphatase:	50 mM Tris-HCl (pH 7.6 at 25° C); 10 mM MgCl ₂ ; 100 mM NaCl; 1 mM DTT.

B100	A (Storage and dilution buffer):	10 mM Tris-HCl (pH 7.6 at 25° C); 50 mM KCl; 0,1 mM EDTA; 200 μg/ml BSA; 1 mM DTT; 50% glycerol.
B102	M-MuLV Reverse Transcriptase dilution Buffer	10 mM KH ₂ PO ₄ (pH 7.5); 0,1 mM EDTA; 200 mM NaCl; 7 mM 2-mercaptoethanol; 50% glycerol
B307	MgCl ₂ , 50 mM water solution	50 mM MgCl ₂ ; 500 μl
B101	BSA (for Restrictases)	10 mg/ml BSA. ; 500 μl

Math	Enzyme	Descapition sequence	SE	BSA	Activity (% from maximum)					Optimum Inactivati		
Abs		Recognition sequence		BSA			_			t, °C	on,20min	
Accel of TGC/*GCA W - 50-75 75-100 25-50 100 75-100 37 65°C Accel of AccCTGC(48) Y - 25-50 25-50 51-75 50-75 50-75 37 65°C Accel of GC/TACC W - 10-25 25-50 51-05 50-75 37 65°C Accel of GC/TACC W - 10-25 25-50 51-05 50-75 37 65°C Accel of GC/TACC W - 10-25 10-25 10-25 75-100 50-75 37 65°C Accel of GC/TACC Y - 75-100 75-100 25-50 25-50 100 37 65°C Accel of GC/TACC Y - 75-100 0-10 0-10 0-10 0-13 37 65°C Accel of GC/TAC(45) Y + 9-10 0-10 0-10 0-10 0-10 37 65°C Accel of GC/TAC(45) Y + 75-100 50-75 0-10 50-75 25-50 75-100 37 65°C Accel of GC/TAC(45) Y + 75-100 50-75 0-10 50-75 25-50 75-100 37 65°C Accel of GC/TAC(45) Y + 75-100 50-75 50-75 50-75 50-75 50-75 30-75 30-75 Accel of GC/TAC(46) Y+5-AAN + 25-50 50-75 50-75 50-75 50-75 50-75 30-75 30-75 Accel of GC/TAC(46) Y+5-AAN + 25-50 50-75 50-75 50-75 50-75 50-75 30-75 30-75 Accel of GC/TAC(46) Y+5-AAN + 25-50 50-75 50-75 50-75 50-75 50-75 30-75 30-75 Accel of GC/TAC(46) Y+5-AAN + 25-50 50-75 50-75 50-75 50-75 50-75 30-75 30-75 Accel of GC/TAC(47) Y + 75-100 50-75 50-75 50-75 50-75 50-75 30-75 30-75 30-75 30-75 Accel of GC/TAC(47) Y + 75-100 50-75 50-75 50-75 50-75 30-75				-								
Ace361 ACCTGC(4/8) Y - 25-50 25-50 50-75 100 37 65°C Ace8611 G°GTACC K + 50-75 10-25 55-50 10-25 37-5 65°C AceB11 CCANNNYTGG G - 75-100 10-25 10-25 05-75 37-100 80-75 37 65°C AceB11 CACNNNYTGG G - 75-100 75-100 25-50 25-50 10-10 37 65°C AceI AA°CGTT Y + 75-100 50-75 100 100 37 65°C AceI AA°CGTC G - 50-75 100 50-75 100 100 37 65°C AceI AGCGTC Y + 10-10 50-75 50-75 50-75 100 37 65°C AceI AGCGTC Y - 10-25 05-75 50-75 100 37 65°C				-								
Acc651 G°GTACC W - 10-25 25-50 75-100 10-25 37 65°C Acc8P1 G°GYRCC K + 50-75 10-25 10-02 51-03 37 65°C AceBS1 GAGYCGG Y - 75-10 75-10 25-50 10-0 37 65°C AceB1 AY°GTT Y + 0-10 0-10 0-10 100 37 65°C AclW1 GGATC(4/5) Y + 75-100 50-75 100 0-10 100 37 65°C Acs 1 Y°GGCCR G - 50-75 100 0-10 100 37 65°C Acs 1 R°GGCT W + 25-50 50-75 50-75 100 10-25 50 50-75 Acs 1 R°AGTTY W + 25-50 50-75 50-75 100 10-25 50 50-75 100 10 37 65°C				-								
AceBI I GCANNNYNTOG K + 50-75 10-25 10-25 57-50 59-75 37 65°C AceBI I GCANNNYNTOG G - 10-25 100 25-50 59-75 59-75 59-75 59-75 59-75 59-75 50-75 50-75 50-75 50-75 100 37 65°C AceI I AA*CGITT Y + 75-100 50-75 100 100 37 65°C AceI I YGGCCR G - 50-75 75-100 37 65°C 65°C Aga 1 75-75 <		` /		-								
AceB7 I CCANNINN'NTGG G - 10-25 100 25-50 50-75 50-75 37 65°C Acl I AA°CGGG Y - 75-100 75-100 0-10 0-10 10 37 65°C Acl II AA°CGGT Y + 75-100 50-75 100 0-10 100 37 65°C Acl II GATC(4/5) Y + 75-100 50-75 100 10-10 100 37 65°C Acs I R°AGTTY W + 25-50 50-75 50-75 100 10-25 50 80°C Acu I CTGAAG(16/14) Y+8AM + 25-50 50-75 50-75 100 10 37 65°C Afe I AGCCT Y + 10-25 50-75 50-75 75-100 10 37 65°C Abl I ACCTG Y - 75-100 75-100 100 37 65°C </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-								
AceBs1 AGG*CGG Y - 75-100 75-100 25-50 25-50 100 37 65°C AclW1 AGCCTTT Y + 75-100 50-75 0-10 0-10 100 37 65°C AceJ Y*GCCR G - 30-75 100 50-75 25-50 50-75 25-50 50-75 25-50 50-75 25-50 50-75 50-75 50-10 10-20 37 65°C AceJ Y*SAM + 25-50 50-75 50-75 75-100 100 37 65°C AgeJ TTS*AA Y + 75-100 50-75 51-100 100 37 65°C AgaJ TTS*AA Y + 75-100 50-75 51-00 100 37 65°C AgaJ TTS*AA Y + 75-100 75-100 25-50 75-100 37 65°C Alai AcCTGGT Y + <t< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				+								
AcIUI AA-CCCTT Y + 0-10 0-10 0-10 100 37 65°C Aco I Y'GGCCR G - 30-75 0-10 0-10 100 37 65°C Aco I Y'GGCCR G - 50-75 50-75 50-75 51-00 37 65°C Aco I CTGAAG(16/14) Y sAM + 25-50 50-75 50-75 51-00 37 65°C Afe I AGCGCT Y - 10-25 50-75 51-100 100 37 65°C Ahl I ACCAGT Y + 75-100 75-100 75-100 10-025 10-03 37 65°C Ahl I ACCAGT B + 100 75-100 12-02 25-50 10-10 37 65°C Alul I ACCCAT B + 100 75-100 10-02 55-50 10-03 37 65°C Aox I *PuGGmCPy	AccB7 I	CCANNNN^NTGG		-					50-75			
AcIWI GGATC(4/s) Y + 75-100 50-75 0-10 0-10 100 37 65°C Acs I Y°GGCCR G - 50-75 100 50-75 25-50 75-100 37 65°C Acs I R°AATTY W + 25-50 50-75 50-75 100 10-25 50 80°C Aci I GGCGCT Y - 10-25 55-50 57-100 100 37 65°C Ags I TSAA Y + 75-100 57-100 100 37 65°C Ags I TSAA Y + 75-100 50-75 10-25 10-25 10-25 10-25 10-25 36°C Ags I ACCWGG Y - 25-50 10-25 25-50 100 37 65°C Alu I AG°CT B + 10-25 55-50 100 37 65°C Ama 71 CYCCGG W				-								
Ace I Y°GGCCR G - 50-75 100 50-75 25-50 35-75 100 10-25 50 80°C Acu I CTGAAG(16/14) Y+SAM + 25-50 50-75 50-75 75-100 100-25 50 60°C Age I AGC°GCT Y - 10-25 25-50 75-100 75-100 100 37 65°C Alal I AGC°GCT Y + 75-100 75-100 25-50 10-25 10-25 10-25 10-3 76°C Alul I ACTAGT B + 100 75-100 10-25 50-75 100 37 65°C Alul I AG°CT Y - 75-100 75-100 10-25 10-25 10-25 10-25 10-25 75-100 37 65°C Alul I AG°CTG W + 10-25 50-75 75-100 00 37 65°C Aox I **PüGGGCC Y				+								
Ace I R^AATTY W + 25.50 50.75 50.75 100 10-25 50 80°C Age I CTGAAG(16/14) Y+8M + 25.50 50.75 75-100 100 37 65°C Age I TGGAG(16/14) Y + 75-100 50.75 75-100 75-100 37 65°C Age I TTS^AA Y + 75-100 50.75 10-25 10-25 10-03 37 65°C Alul I ACTGAG Y - 25.50 10-10 25.50 10-00 55 65°C Alua I AG°CT B + 10-07 75-100 75-100 10-25 50.75 100 37 65°C Amas T1 C°VCGRG W + 10-25 50-50 10-10 100 37 65°C Amas T1 C°VGGGG Y + 50-10 50-10 10-10 37 65°C Amas T1 C				+								
Ace I CTGAAG(16/14) Y+8AM + 25.50 50.75 75.100 100 37 65°C Afe I AGC GCT Y - 10-25 25-50 75-100 75-100 37 65°C All I A°CTAGT B + 100 75-100 25-50 12-55 10-25 10-25 50-75 75-100 37 65°C Alu I A°CTAGT Y - 25-50 10-25 10-25 50-75 100 37 65°C Alu I AG°CT Y - 75-100 75-100 10-25 50-75 100 37 65°C Ana I A°CCGGR W + 10-25 50-75 75-100 10 0 37 65°C Ara I A°DGGGC°C Y + 50-75 25-50 10-10 100 37 65°C Asi GI A°CCGGT O - 10-25 25-50 10-10 100 37				-								
Age I AGC**GCT Y - 10-25 25-50 75-100 75-100 37 65°C Ags I TTS*AA Y + 75-100 50-75 10-25 10-0 37 65°C Ahl I A°CTAGT B + 100 75-100 25-50 10-25 10-25 10-3 No Ajn I A°CGGG Y - 25-50 10-25 25-50 100 37 65°C Alb I A°CT B + 10-25 50-75 100 0-0 37 65°C Ama871 C'YCGIRG W + 10-25 50-75 75-100 60 No Apa1 GGGCC°C Y + 50-75 25-50 10-10 00 0 <td></td>												
Ags1 TTS°AA Y + 75-100 50-75 10-25 10-25 10-0 37 65°C AhlI Λ°CTAGT B + 100 75-100 15-25 15-25 15-25 15-25 15-25 15-25 15-25 15-25 15-25 15-25 15-25 15-25 15-25 15-25 15-25 15-25 16-25 65°C Am 76°C Am 76°C 75-100 75-100 10-25 55-50 100 37 65°C Am 65°C Am 78-100 10-25 50-75 75-100 100 0-10 0		, ,		+								
AhII												
Ajn I *CCWGG Y - 25-50 10-25 25-50 100 55 65°C Alu I AG°CT Y - 75-100 75-100 10-25 50-75 100 37 65°C Ama87 I C°YCGRG W + 10-25 50-75 75-100 37 65°C Aox I °PuG(5mC)Py * - 75-100 25-50 10-25 75-100 37 65°C Aspa I GGGCC°C Y + 50-75 75-100 100 0-10 37 65°C Ars I (%13GAC(N)GTTYG(11/6) Y + 0 0 0 100 37 65°C AsiG I ACCTAGG W + 10-25 50-75 75-100 100 75-100 30 65°C AspA21 C CCTAGG W + 10-25 50-75 75-100 100 57-100 37 65°C AspLE I GGGCC O	_			+								
Alu I AG°CT Y - 75-100 75-100 10-25 50-75 100 37 65°C Alu BI AG°CT B + 100 75-100 10-25 75-100 37 65°C Ama871 C°YCGRG W + 10-25 50-75 75-100 100 0-10 37 65°C Aox I *PuG(6mC)Py * - 75-100 25-50 10-10 100 0-10 37 65°C Asra I \$M3(3GAC(N)RTTYG(11/6) Y + 0 0 0 10 10 30 65°C AsiG I A°CCGGT O - 10-25 25-50 100 75-100 30 65°C AspE2 I GCGC O - 10-25 25-50 100 05-100 37 65°C AspE2 I GCCTAGG W + 10-25 50-75 75-100 100 50-100 37 65°C <th< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				+								
AluB AG^CT				-								
Ama87 C-YCGRG				-								
Aox Apal GGGCC^C Y + 50.75 25.50 10-25 25.50 75.100 60 No				+								
Apa I GGGCC**C Y + 50.75 25.50 0.10 0.10 100 37 65°C Ars I (8/13)GAC(N)kTTYG(11/6) Y + 0 0 0 0 0 100 330 65°C Ars I (8/13)GAC(N)kTTYG(11/6) Y + 0 0 0 0 0 100 330 65°C AssiG I A^CCGGT O - 10-25 25.50 100 75-100 10-25 37 65°C AspA2 I C**CTAGG W + 10-25 50-75 75-100 100 75-100 37 80°C AspA2 I C**CTAGG W - 10-25 50-75 75-100 100 50-75 37 65°C AspS91 G^GNCC W - 50-75 50-75 75-100 100 50-75 37 65°C AspS91 G^GNCC W - 50-75 50-75 75-100 100 50-75 37 65°C AsuC2 I CC**SGG Y - 75-100 50-75 10-25 25-50 100 37 65°C AsuHP I GGTGA(8/7) O - 10-25 50-75 10-25 25-50 100 37 65°C AsuHP I GGTGA(8/7) O - 10-25 50-75 10-10 100 37 65°C AsuHP I GCGACC G + 25-50 100 75-100 25-50 37 65°C Barl I (7/12)GAAG(N)aTAC(12/7) 2K - 0 0-10 10-25 50-75 10-25 37 65°C Barl I (7/12)GAAG(N)aTAC(12/7) 2K - 0 0-10 10-25 100 25-50 37 65°C Bgl II GCCNNNN*NGGC 2W - 50-75 50-75 50-10 25-50 37 65°C Bgl II A^GATCT O - 0-10 10-25 100 25-50 10-25 37 80°C Bgl II A^GATCT O - 0-10 10-25 100 25-50 10-25 37 80°C Bis I Gymy*NGC * - 10-25 10-25 100 25-50 37 65°C Bmt1 G'GMCC W - 10-25 10-25 100 25-50 37 65°C Bmt1 GCGACGC W - 10-25 10-25 100 25-50 37 65°C Bmt1 GCGCNNN*NN*NGGC 2W - 50-75 50-75 50-75 50-10 25-50 37 65°C Bmt1 GCGACGC W - 50-75 50-75 50-75 50-75 50-75 50-75 37 65°C Bmt1 GCACGC W - 10-25 10-25 100 75-100 30 65°C Bmt1 GCACGC W - 10-25 10-25 100 35-50 10-25 37 80°C Bmt1 GCACGC W - 10-25 10-25 100 35-50 10-25 37 65°C Bmt1 GCACGC W - 10-25 10-25 10-35 10-35 10-35 37 65°C Bmt1 GCACGC W - 10-25 10-35 10-35 10-35 10-35 37 65°C Bmt1 GCACGC W - 10-25 10-35 10-35 10-35 10-35 37 65°C Bmt1 GCACGC W - 10-25 10-35 10-35 10-35 10-35 37 65°C Bmt1 GCACGC W - 10-25 10-35 10-35 10-35 10-35 37 65°C Bmt1 GCACGC W - 10-25 10-35 10-35 10-35 10-35 37 65°C Bmt1 GCACGC W - 10-25 10-35 10-35 10-35 10-35 37 65°C Bmt1 CCGCGC W - 10-25 10-35 10-35 10-35 10-35 37 65°C Bsc1 I ACTGG(1/4) W + 25-50 10-35 10	Ama87 I			+								
Ass (8/13)GAC(N)cTTYG(11/6) Y	Aox I	, , ,		-			10-25		75-100			
AsiG		GGGCC^C					0-10					
AspA2 I C^CTAGG W + 10-25 50-75 75-100 100 75-100 37 80°C AspLE I GCG^C O - 0-25 75-100 100 50-75 37 80°C AspS9 I G^GNCC W - 50-75 50-75 75-100 100 50-75 37 65°C AsuC2 I CC^SGG Y - 75-100 50-75 10-25 25-50 100 37 65°C AsuHH I GGTGA(8/7) O - 10-25 50-75 10-0 25-50 37 65°C AsuHH I G^CTAGC Y + 75-100 50-75 0-10 0-10 100 37 65°C Bar I (7/12)GAAG(N)6TAC(12/7) 2K - 0 0-10 10-25 100 75-100 25-50 37 65°C Bg1 I GWGCW^C O - 0-10 10-25 100 75-100 25-50 <t< td=""><td></td><td>. , , , , , , , , , , , , , , , , , , ,</td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		. , , , , , , , , , , , , , , , , , , ,		+								
AspLE I GCG^C O - 0-25 75-100 100 50-75 25-50 37 80°C AspS9 I G*GNCC W - 50-75 50-75 75-100 100 50-75 37 65°C AsuC2 I CC^SGG Y - 75-100 50-75 100 50-75 37 65°C AsuHP I GGTGA(8/7) O - 10-25 50-75 100 75-100 25-50 37 65°C AsuNH I G*CAGC Y + 75-100 50-75 100 75-100 25-50 37 65°C Bar I G*CATCC G + 25-50 100 75-100 25-50 37 65°C Bbv1 2 GWGCW^*C O - 0-10 10-25 100 75-100 10-25 37 65°C Bg1 I GCCNNNN*NGGC 2W - 50-75 50-75 0-10 75-100 37-5 37 65°C <td></td> <td>A^CCGGT</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		A^CCGGT		-								
Asp89 I G^GNCC W - 50-75 50-75 75-100 100 50-75 37 65°C AsuC2 I CC^SGG Y - 75-100 50-75 110-25 25-50 100 37 65°C AsuNHI I GGTGA(8/7) O - 10-25 50-75 100 75-100 25-50 37 65°C AsuNHI GCAGC Y + 75-100 50-75 0-10 0-10 100 37 65°C Bar I (7/12)GAAG(N) ₆ TAC(1277) 2K - 0 0-10 10-25 50-75 10-25 37 65°C Bar I (7/12)GAAG(N) ₆ TAC(1277) 2K - 0 0-10 10-25 100 75-100 10-25 37 65°C Bar I (7/12)GAAG(N) ₆ TAC(1277) 2K - 0 0-10 10-25 100 75-100 10-25 37 65°C Bg1 I GCCNNNNN^6GC 2W - 50-75 50-	_		W	+	10-25	50-75	75-100	100	75-100			
AsuC2 CC^SGG				-								
ASuHP GGTGA(8/7)				-								
ASuNHI G^CTAGC Y	AsuC2 I			-								
BamH				-	10-25		100	75-100				
Bar I (7/12)GAAG(N) ₆ TAC(12/7) 2K - 0 0-10 25-50 50-75 10-25 37 65°C Bbv12 I GWGCW^C O - 0-10 10-25 100 75-100 10-25 37 80°C Bgl I GCCNNNN^NOGC 2W - 50-75 50-75 0-10 75-100 25-50 37 65°C Bis I G(5mC)^NGC * - 10-25 25-50 50-75 37 65°C Bis I PuPyN^PuPy W - 10-25 25-50 50-75 75-100 30 65°C Bmt1 GCTAG^C W - 10-25 25-50 100 75-100 30 65°C Bmt1 GCTAG^C W - 10-25 50-75 50-75 100 75-100 37 65°C Bmt1 GCTAG^C(16/14) W + 25-50 50-75 50-75 100 37 65°C Bpu10 1	AsuNH I			+	75-100		0-10	0-10	100			
Bbv12	BamH I	G^GATCC		+	25-50	100	75-100	75-100		37		
Bgl I GCCNNNN^NGGC 2W - 50-75 50-75 0-10 75-100 25-50 37 65°C Bgl II A^GATCT O - 0-10 10-25 100 25-50 10-25 37 80°C Bis I G(5mC)^NGC * - 10-25 25-50 50-75 75-100 50-75 37 65°C Bls I PupyN^Pupy W - 10-25 25-50 100 75-100 30 65°C Bmt I GCTAG^C W - 10-25 50-75 100 75-100 37 65°C Bmt I GCTAG^C W - 10-25 50-75 100 75-100 37 65°C Bmt I CTGGAG(16/14) W + 25-50 50-75 100 75-100 37 65°C Bpul 0 I CCGGAG(16/14) W + 25-50 50-75 75-100 37 65°C Bpul 1 T^*CGAA G	Bar I			-								
Bgl II A^GATCT O - 0-10 10-25 100 25-50 10-25 37 80°C Bis I G(5mC)^NGC * - 10-25 25-50 50-75 75-100 50-75 37 65°C Bls I PuPyN^PuPy W - 10-25 10-25 50-75 100 75-100 30 65°C Bmt I GCTAG^C W - 10-25 50-75 100 75-100 37 65°C Bmul ACTGGG(5/4) Y - 75-100 75-100 25-50 50-75 100 37 65°C Bpm1 CTGGAG(16/14) W + 25-50 50-75 50-75 100 37 65°C Bpu10 I CCC*TNAGC K - 10-25 25-50 50-75 50-75 37 65°C Bpu14 I TT^*CGAA G - 50-75 100 25-50 37 80°C Bse21 I ACT				-			100		10-25	37		
Bis I G(5mC)^NGC * - 10-25 25-50 50-75 75-100 50-75 37 65°C Bls I PuPyN^PuPy W - 10-25 10-25 50-75 100 75-100 30 65°C Bme18 I G^GWCC O - 10-25 25-50 100 75-100 10-25 37 65°C Bmt I GCTAG^C W - 10-25 50-75 50-75 100 75-100 37 65°C Bmu I ACTGGG(5/4) Y - 75-100 75-100 25-50 50-75 100 37 65°C Bpu1 CTGGAG(16/14) W + 25-50 50-75 75-100 100 50-75 37 65°C Bpu10 I CC^TNAGC K - 10-25 25-50 50-75 50-75 37 80°C Bpu14 I TT^CGAA G - 50-75 100 25-50 75-100 37 65°C	Bgl I	GCCNNNN^NGGC	2W	-			0-10	75-100				
Bis I		A^GATCT	O	-	0-10		100					
Bme18 I G^GWCC O - 10-25 25-50 100 75-100 10-25 37 65°C Bmt I GCTAG^C W - 10-25 50-75 50-75 100 75-100 37 65°C BmuI ACTGGG(5/4) Y - 75-100 75-100 25-50 50-75 100 37 65°C Bpm I CTGGAG(16/14) W + 25-50 50-75 75-100 100 50-75 37 65°C Bpu10 I CC^TNAGC K - 10-25 25-50 50-75 50-75 25-50 37 80°C Bpu14 I TT^CGAA G - 50-75 100 25-50 25-50 37 65°C Bsa29 I AT^CGAT G + 25-50 100 50-75 75-100 37 65°C Bse4 I CCNNNNNYNNGG W + 75-100 75-100 25-50 55 80°C	Bis I	G(5mC)^NGC		-	10-25	25-50	50-75	75-100	50-75		65°C	
Bmt I GCTAG^C W - 10-25 50-75 50-75 100 75-100 37 65°C BmuI ACTGGG(5/4) Y - 75-100 75-100 25-50 50-75 100 37 65°C Bpm I CTGGAG(16/14) W + 25-50 50-75 75-100 100 50-75 37 65°C Bpu10 I CC^TNAGC K - 10-25 25-50 50-75 50-75 25-50 37 80°C Bpu14 I TT^CGAA G - 50-75 100 25-50 25-50 37 65°C Bsa29 I AT^CGAT G + 25-50 100 50-75 75-100 37 65°C Bse4 I CCNNNNN^NNGG W + 75-100 75-100 50-75 75-100 37 65°C Bse11 R^*CCGGY O - 0-10 50-75 10-25 100 25-50 55 80°C			W	-								
BmuI ACTGGG(5/4) Y - 75-100 75-100 25-50 50-75 100 37 65°C Bpm I CTGGAG(16/14) W + 25-50 50-75 75-100 100 50-75 37 65°C Bpu10 I CC^TNAGC K - 10-25 25-50 50-75 50-75 25-50 37 80°C Bpu14 I TT^CGAA G - 50-75 100 25-50 25-50 75-100 37 65°C Bsa29 I AT^CGAT G + 25-50 100 50-75 50-75 75-100 37 65°C Bsc4 I CCNNNNNNNNNGG W + 75-100 75-100 50-75 100 25-50 55 80°C Bse1 I ACTGG(1/-1) Y - 75-100 75-100 25-50 10-25 100 65 80°C Bse21 I CC^TNAGG Y - 50-75 50-75 10-25 25-50<	Bme18 I	G^GWCC	O	-	10-25	25-50	100	75-100	10-25	37	65°C	
Bpm I CTGGAG(16/14) W + 25-50 50-75 75-100 100 50-75 37 65°C Bpu10 I CC^TNAGC K - 10-25 25-50 50-75 50-75 25-50 37 80°C Bpu14 I TT^CGAA G - 50-75 100 25-50 25-50 75-100 37 65°C Bsa29 I AT^CGAT G + 25-50 100 50-75 50-75 75-100 37 65°C Bsc4 I CCNNNNN*NNGG W + 75-100 75-100 50-75 100 25-50 55 80°C Bsc1 I ACTGG(1/-1) Y - 75-100 75-100 25-50 10-25 100 65 80°C Bsc11 B R^CCGGY O - 0-10 50-75 100 75-100 25-50 65 80°C Bsc21 I CC^TNAGG Y - 50-75 50-75 10-25 25-50	Bmt I	GCTAG^C	W	-	10-25	50-75	50-75	100	75-100	37	65°C	
Bpul 0 I CC^TNAGC K - 10-25 25-50 50-75 50-75 25-50 37 80°C Bpul 4 I TT^CGAA G - 50-75 100 25-50 25-50 75-100 37 65°C Bsa29 I AT^CGAT G + 25-50 100 50-75 50-75 75-100 37 65°C Bsc4 I CCNNNNN^NNGG W + 75-100 75-100 50-75 100 25-50 55 80°C Bsc1 I ACTGG(1/-1) Y - 75-100 75-100 25-50 10-25 100 65 80°C Bsc11 R^CCGGY O - 0-10 50-75 100 75-100 25-50 65 80°C Bsc21 I CC^TNAGG Y - 50-75 50-75 10-25 25-50 100 37 80°C Bsc3D I GCAATG(2/0) G - 10-25 100 25-50 50-75 75-100<	BmuI	ACTGGG(5/4)		-	75-100	75-100	25-50	50-75	100	37	65°C	
Bpu14 I TT^CGAA G - 50-75 100 25-50 25-50 75-100 37 65°C Bsa29 I AT^CGAT G + 25-50 100 50-75 75-100 37 65°C Bsc4 I CCNNNNN^NNGG W + 75-100 75-100 50-75 100 25-50 55 80°C Bsc1 I ACTGG(1/-1) Y - 75-100 75-100 25-50 10-25 100 65 80°C Bsc118 I R^CCGGY O - 0-10 50-75 100 25-50 65 80°C Bsc21 I CC^TNAGG Y - 50-75 50-75 10-25 25-50 100 37 80°C Bsc3D I GCAATG(2/0) G - 10-25 100 25-50 50-75 75-100 60 80°C Bse8 I GATNN^NNATC G - 25-50 100 75-100 50-75 50-75 50-75		CTGGAG(16/14)	W	+	25-50	50-75	75-100	100	50-75	37	65°C	
Bsa29 I AT^CGAT G + 25-50 100 50-75 50-75 75-100 37 65°C Bsc4 I CCNNNNN^NNGG W + 75-100 75-100 50-75 100 25-50 55 80°C Bsc1 I ACTGG(1/-1) Y - 75-100 75-100 25-50 10-25 100 65 80°C Bsc118 I R^CCGGY O - 0-10 50-75 100 75-100 25-50 65 80°C Bsc21 I CC^TNAGG Y - 50-75 50-75 10-25 25-50 65 80°C Bsc3D I GCAATG(2/0) G - 10-25 100 25-50 50-75 75-100 60 80°C Bsc8 I GATNN^NNATC G - 25-50 100 75-100 50-75 50-75 50 65°C BseX3 I C^GGCG G - 50-75 100 50-75 50-75 50	Bpu10 I	CC^TNAGC	K	-	10-25	25-50	50-75	50-75	25-50	37		
Bsc4 I CCNNNNN^NNGG W + 75-100 75-100 50-75 100 25-50 55 80°C Bse1 I ACTGG(1/-1) Y - 75-100 75-100 25-50 10-25 100 65 80°C Bse118 I R^CCGGY O - 0-10 50-75 100 75-100 25-50 65 80°C Bse21 I CC^TNAGG Y - 50-75 50-75 10-25 25-50 100 37 80°C Bse3D I GCAATG(2/0) G - 10-25 100 25-50 50-75 75-100 60 80°C Bse8 I GATNN^NNATC G - 25-50 100 75-100 50-75 50-75 60 80°C BseP I G^CGGGC G - 50-75 100 75-100 50-75 50-75 50 65°C BseX3 I C^GGCCG O - 10-25 25-50 100 50-75	Bpu14 I	TT^CGAA	G	-	50-75	100	25-50	25-50	75-100	37	65°C	
Bse1 I ACTGG(1/-1) Y - 75-100 75-100 25-50 10-25 100 65 80°C Bse118 I R^CCGGY O - 0-10 50-75 100 75-100 25-50 65 80°C Bse21 I CC^TNAGG Y - 50-75 50-75 10-25 25-50 100 37 80°C Bse3D I GCAATG(2/0) G - 10-25 100 25-50 50-75 75-100 60 80°C Bse8 I GATNN^NNATC G - 25-50 100 75-100 50-75 60 80°C BseP I G^CGCGC G - 50-75 100 75-100 50-75 50 65°C BseX3 I C^GGCCG O - 10-25 25-50 100 50-75 10-25 50 80°C Bso31 I GGGAC(10/14) Y + 25-50 25-50 10-25 25-50 55 80°C	Bsa29 I	AT^CGAT		+	25-50	100	50-75	50-75	75-100	37	65°C	
Bse118 I R^CCGGY O - 0-10 50-75 100 75-100 25-50 65 80°C Bse21 I CC^TNAGG Y - 50-75 50-75 10-25 25-50 100 37 80°C Bse3D I GCAATG(2/0) G - 10-25 100 25-50 50-75 75-100 60 80°C Bse8 I GATNN^NNATC G - 25-50 100 75-100 50-75 60 80°C BseP I G^CGCGC G - 50-75 100 75-100 50-75 50 65°C BseX3 I C^GGCCG O - 10-25 25-50 100 50-75 10-25 50 80°C BslF I GGGAC(10/14) Y + 25-50 25-50 10-25 25-50 10 37 80°C Bsp13 I T^CCGGA 2K - 25-50 50-75 75-100 50-75 75-100 50		CCNNNNN^NNGG	W	+	75-100	75-100	50-75	100	25-50	55	80°C	
Bse21 I CC^TNAGG Y - 50-75 50-75 10-25 25-50 100 37 80°C Bse3D I GCAATG(2/0) G - 10-25 100 25-50 50-75 75-100 60 80°C Bse8 I GATNN^NNATC G - 25-50 100 75-100 50-75 60 80°C BseP I G^CGCGC G - 50-75 100 75-100 50-75 50 65°C BseX3 I C^GGCCG O - 10-25 25-50 100 50-75 10-25 50 80°C BslF I GGGAC(10/14) Y + 25-50 25-50 10-25 25-50 100 37 80°C Bsp13 I T^CCGGA 2K - 25-50 50-75 75-100 50-75 0-10 50 65°C Bsp1720 I GC^TNAGC G - 50-75 100 50-75 75-100 37 80°C </td <td>Bse1 I</td> <td>ACTGG(1/-1)</td> <td>Y</td> <td>-</td> <td>75-100</td> <td>75-100</td> <td>25-50</td> <td>10-25</td> <td>100</td> <td>65</td> <td>80°C</td>	Bse1 I	ACTGG(1/-1)	Y	-	75-100	75-100	25-50	10-25	100	65	80°C	
Bse3D I GCAATG(2/0) G - 10-25 100 25-50 50-75 75-100 60 80°C Bse8 I GATNN^NNATC G - 25-50 100 75-100 50-75 60 80°C BseP I G^CGCGC G - 50-75 100 75-100 50-75 50-75 50 65°C BseX3 I C^GGCCG O - 10-25 25-50 100 50-75 10-25 50 80°C BsIF I GGGAC(10/14) Y + 25-50 25-50 10-25 25-50 100 37 80°C Bso31 I GGTCTC(1/5) O + 25-50 75-100 100 75-100 25-50 55 80°C Bsp13 I T^CCGGA 2K - 25-50 50-75 75-100 50-75 75-100 37 80°C Bsp1720 I GC^TNAGC G - 50-75 100 50-75 75-100 37 <td>Bse118 I</td> <td>R^CCGGY</td> <td>O</td> <td>-</td> <td>0-10</td> <td>50-75</td> <td>100</td> <td>75-100</td> <td>25-50</td> <td>65</td> <td>80°C</td>	Bse118 I	R^CCGGY	O	-	0-10	50-75	100	75-100	25-50	65	80°C	
Bse8 I GATNN^NNATC G - 25-50 100 75-100 50-75 60 80°C BseP I G^CGCGC G - 50-75 100 75-100 50-75 50 65°C BseX3 I C^GGCCG O - 10-25 25-50 100 50-75 10-25 50 80°C BsIF I GGGAC(10/14) Y + 25-50 25-50 10-25 25-50 100 37 80°C Bso31 I GGTCTC(1/5) O + 25-50 75-100 100 75-100 25-50 55 80°C Bsp13 I T^CCGGA 2K - 25-50 50-75 75-100 50-75 0-10 50 65°C Bsp1720 I GC^TNAGC G - 50-75 100 50-75 75-100 37 80°C	Bse21 I	CC^TNAGG	Y	-	50-75	50-75	10-25	25-50	100	37	80°C	
BseP I G^CGCGC G - 50-75 100 75-100 50-75 50-75 50 65°C BseX3 I C^GGCCG O - 10-25 25-50 100 50-75 10-25 50 80°C BslF I GGGAC(10/14) Y + 25-50 25-50 10-25 25-50 100 37 80°C Bso31 I GGTCTC(1/5) O + 25-50 75-100 100 75-100 25-50 55 80°C Bsp13 I T^CCGGA 2K - 25-50 50-75 75-100 50-75 0-10 50 65°C Bsp1720 I GC^TNAGC G - 50-75 100 50-75 75-100 37 80°C	Bse3D I	GCAATG(2/0)	G	-	10-25	100	25-50	50-75	75-100	60	80°C	
BseX3 I C^GGCCG O - 10-25 25-50 100 50-75 10-25 50 80°C BslF I GGGAC(10/14) Y + 25-50 25-50 10-25 25-50 100 37 80°C Bso31 I GGTCTC(1/5) O + 25-50 75-100 100 75-100 25-50 55 80°C Bsp13 I T^CCGGA 2K - 25-50 50-75 75-100 50-75 0-10 50 65°C Bsp1720 I GC^TNAGC G - 50-75 100 50-75 75-100 37 80°C		GATNN^NNATC		-								
BslF I GGGAC(10/14) Y + 25-50 25-50 10-25 25-50 100 37 80°C Bso31 I GGTCTC(1/5) O + 25-50 75-100 100 75-100 25-50 55 80°C Bsp13 I T^CCGGA 2K - 25-50 50-75 75-100 50-75 0-10 50 65°C Bsp1720 I GC^TNAGC G - 50-75 100 50-75 75-100 37 80°C	BseP I	G^CGCGC	G	-		100	75-100	50-75	50-75	50	65°C	
Bso31 I GGTCTC(1/5) O + 25-50 75-100 100 75-100 25-50 55 80°C Bsp13 I T^CCGGA 2K - 25-50 50-75 75-100 50-75 0-10 50 65°C Bsp1720 I GC^TNAGC G - 50-75 100 50-75 75-100 37 80°C	BseX3 I	C^GGCCG		-	10-25	25-50	100	50-75	10-25	50	80°C	
Bsp13 I T^CCGGA 2K - 25-50 50-75 75-100 50-75 0-10 50 65°C Bsp1720 I GC^TNAGC G - 50-75 100 50-75 75-100 37 80°C	BslF I		Y	+	25-50	25-50	10-25	25-50	100	37	80°C	
Bsp1720 I GC^TNAGC G - 50-75 100 50-75 50-75 75-100 37 80°C	Bso31 I	GGTCTC(1/5)	О	+	25-50	75-100	100	75-100	25-50	55	80°C	
•	Bsp13 I	T^CCGGA	2K	-	25-50	50-75	75-100	50-75	0-10	50	65°C	
Ren19 I C^CATGG 2W + 0.10 10.25 50.75 75.100 10.25 27 65°C	Bsp1720 I	GC^TNAGC	G	-	50-75	100	50-75	50-75	75-100	37	80°C	
Dop171 C C/11GG 2W 1 0-10 10-23 30-73 73-100 10-23 37 03 C	Bsp19 I	C^CATGG	2W	+	0-10	10-25	50-75	75-100	10-25	37	65°C	

 $[\]boldsymbol{*}$ - supplied with its own unique reaction buffer that is different from the five standard SE-Buffers.

Enzyme	Recognition sequence	SE	BSA		Activity (%			*7	Optimum	Inactivati
-	CCGC(-3/-1)	Buffer O	+	B 10-25	25-50	100	75-100	10-25	7 t, °C	on,20min 65°C
BspAC I	CG^CG	Y		50-75	75-100	75-100	50-75	10-23	37	65°C
BspFN I BssEC I	C^CNNGG	Y	-	50-75	50-75	50-75	75-100	100	60	80°C
BssNA I	GTA^TAC	W	+	50-75	50-75	75-100	100	75-100	37	No
BssNA I BssT1 I	C^CWWGG	2K	-	10-25	25-50	25-50	75-100	10-25	60	80°C
Bst2B I	CTCGTG(-5/-1)	Y	+	75-100	25-50	10-25	25-50	10-23	60	80°C
Bst2U I	CC^WGG	G	+	75-100	100	50-75	50-75	10-25	60	80°C
Bst4C I	ACN^GT	Y		75-100	75-100	10-25	25-50	10-23	65	80°C
Bst4C I	CTCTTC(1/4)	Y	+	75-100	75-100	50-75	75-100	100	65	80°C
Bsto I BstAC I	GR^CGYC	W	-	75-100	75-100	50-75	100	75-100	37	80°C
BstAF I	C^TTAAG	W	+	10-25	25-50	75-100	100	25-50	55	80°C
BstAP I	GCANNNN^NTGC	W	-	25-50	25-50	75-100	100	25-50	60	80°C
BstAU I	T^GTACA	W		10-25	50-75	25-50	100	25-50	37	80°C
BstBA I	YAC^GTR	W	+	25-50	25-50	75-100	100	25-50	65	80°C
BstC8 I	GCN^NGC	Y	-	10-25	25-50	50-75	75-100	100	55	80°C
BstDE I	C^TNAG	G		75-100	100	25-50	50-75	10-25	60	80°C
BstDS I	C^CRYGG	Y	-	0-10	75-100	50-75	25-50	10-23	65	80°C
BstEN I	CCTNN^NNNAGG	Y	-	50-75	50-75	25-50	25-50	100	65	80°C
		Y	-			25-50			65	
BstF5 I	GGATG(2/0)		-	75-100	50-75		50-75	100		80°C
BstFN I	CG^CG	Y	-	75-100	50-75	25-50	25-50	100	60	80°C
BstH2 I	RGCGC^Y	Y	+	50-75	50-75	0-10	10-25	100	65	80°C
BstHH I	GCG^C	Y	+	75-100	50-75	25-50	50-75	100	50	No
BstKTI	GAT^C	W	-	25-50	50-75	75-100	100	50-75	37	65°C
BstMA I	GTCTC(1/5)	W	+	25-50	50-75	50-75	100	75-100	55	65°C
BstMB I	^GATC	0	-	10-25	25-50	100	75-100	10-25	65	80°C
BstMC I	CGRY^CG	В	+	100	75-100	10-25	10-25	50-75	50	80°C
BstMW I	GCNNNNN^NNGC	Y	-	10-25	25-50	25-50	50-75	100	55	80°C
BstNS I	RCATG^Y	В	+	100	50-75	10-25	10-25	75-100	37	65°C
BstPA I	GACNN^NNGTC	Y	-	50-75	25-50	50-75	50-75	100	65	No
BstSC I	^CCNGG	Y		50-75	50-75	50-75	50-75	100	55	80°C
BstSF I	C^TRYAG	0	+	75-100	25-50	100	50-75	50-75	60	No
BstSL I	GKGCM^C	G	+	50-75	100	50-75	75-100	75-100	55	65°C
BstSN I	TAC^GTA	В	-	100	50-75	0-10	10-25	50-75	37	80°C
BstV1I	GCAGC(8/12)	G	-	75-100	100	75-100	75-100	75-100	55	80°C
BstV2 I	GAAGAC(2/6)	Y	+	75-100	75-100	25-50	25-50	100	55	65°C
BstX I	CCANNNNN^NTGG	0	-	10-25	10-25	100	75-100	25-50	37	65°C
BstX2 I	R^GATCY	G	-	75-100	100	0-10	10-25	25-50	60	80°C
Bsu I	GTATCC(6/5)	Y	-	75-100	50-75	10-25	25-50	100	37	65°C
BsuR I	GG^CC	G	-	75-100	100	25-50	50-75	50-75	37	80°C
Btr I	CACGTC(-3/-3)	0	+	75-100	75-100	100	75-100	75-100	60	80°C
Cci I	T^CATGA	W	+	0-10	10-25	25-50	100	75-100	55	80°C
CciN I	GC^GGCCGC	Y	-	25-50	50-75	75-100	75-100	100	37	65°C
Dra I	TTT^AAA	G	+	75-100	100	25-50	75-100	75-100	37	65°C
Dra III	CACNNN'GTG	2K	+	25-50	50-75	75-100	75-100	50-75	37	65°C
Dri I	GACNNN'NNGTC	Y	-	75-100	75-100	10-25	10-25	100	37	65°C
DseD I	GACNNNN^NNGTC	Y	+	75-100	75-100	25-50	50-75	100	37	80°C
EcoICR I	GAG^CTC	G *	+	75-100	100	0-10	0-10	75-100	37	65°C
EcoR I	G^AATTC		+	50-75	75-100	75-100	100	50-75	37	65°C
EcoR V	GAT^ATC	W	+	0-10	25-50	50-75	100	25-50	37	80°C
Ege I	GGC^GCC	В	+	100	75-100	10-25	50-75	75-100	37	65°C
Erh I	C^CWWGG	2W	+	10-25	25-50	25-50	75-100	10-25	37	65°C
Fae I	CATG^	*	+	25-50	50-75	10-25	10-25	75-100	37	65°C
Fai I	YA^TR (0/12) A A C(21) CTT(12/0)	В	-	100	50-75	10-25	25-50	25-50	50	80°C
Fal I	(8/13)AAG(N) ₅ CTT(13/8)	W+SAM	-	0-10	25-50	75-100	100	50-75	37	65°C
Fat I	^CATG	G	-	10-25	100	25-50	10-25	50-75	55	65°C
Fau I	CCCGC(4/6)	В	-	100	25-50	0-10	0-10	50-75	55	65°C
FauND I	CA^TATG	Y	+	50-75	75-100	10-25	50-75	100	37	65°C
Fbl I	GT^MKAC	Y	-	50-75	75-100	0-10	50-75	100	55	80°C
Fok I	GGATG(9/13)	Y	-	50-75	50-75	25-50	25-50	100	37	65°C

 $[\]boldsymbol{*}$ - supplied with its own unique reaction buffer that is different from the five standard SE-Buffers.

Franco	Recognition sequence	SE	PC A		Activity (<mark>% fro</mark> m n			Optimum	Inactivati
Enzyme		Buffer	BSA	В	G	0	W	Y	t,0C	on,20min
FriO I	GRGCY^C	Y	+	75-100	75-100	10-25	0-10	100	37	65°C
Fsp4H I	GC^NGC	Y	-	50-75	75-100	10-25	25-50	100	37	65°C
Fbl I	GT^MKAC	Y	-	50-75	75-100	0-10	50-75	100	55	80°C
Fok I	GGATG(9/13)	Y	-	50-75	50-75	25-50	25-50	100	37	65°C
FriO I	GRGCY^C	Y	+	75-100	75-100	10-25	0-10	100	37	65°C
Fsp4H I	GC^NGC	Y	-	50-75	75-100	10-25	25-50	100	37	65°C
Gla I	Pu(5mC)^GPy	Y	-	75-100	75-100	25-50	25-50	100	30	65°C
Glu I	G(5mC)^NG(5mC)	Y	-	75-100	75-100	25-50	50-75	100	37	80°C
Gsa I	CCCAG^C	W	+	10-25	25-50	75-100	100	75-100	70	No
Hae III	GG^CC	G B	-	75-100	100	25-50	50-75	50-75	37	80°C
Hga I Hind II	GACGC(5/10)	G G	-	100	75-100	10-25	25-50	50-75	37	65°C
	GTY^RAC	W	+	75-100	100	25-50	25-50	75-100	37	65°C
Hind III	A^AGCTT		+	10-25	25-50	0-10	100	0-10	37	80°C
Hinf I	G^ANTC GTT^AAC	O Y	-	25-50	75-100	100	75-100	75-100	37 37	80°C
Hpa I		В	-	0-10 100	50-75	10-25 10-25	25-50 25-50	100		65°C
Hpa II	C^CGG		-		50-75			50-75	37	80°C
HpySE526I	A^CGT	Y	-	75-100	75-100	10-25	25-50	100	37	65°C
HspA I	G^CGC	Y	-	50-75	50-75	25-50	25-50	100	37	80°C
Kpn I Kro I	GGTAC^C G^C(5mC)GGC	B G	+	100 50-75	25-50 100	25-50 25-50	25-50 50-75	75-100 75-100	37 37	80°C 65°C
	T^GATCA		+						37	
Ksp22 I		2K		50-75	100	50-75 50-75	50-75	25-50		65°C
Kzo9 I	^GATC	G B	-	50-75 100	100	50-75	50-75	50-75	37 37	65°C
Lmn I Mab I	GCTCCN^ A^CCWGGT	W	+	25-50	75-100 50-75	75-100	50-75 100	75-100 50-75		65°C 65°C
Mal I		*	-	25-50	25-50	50-75	75-100	50-75	37 37	65°C
	$G(mA)^{TC}$	Y		75-100	75-100	25-50	50-75	100	37	65°C
Mbo II Mfe I	GAAGA(8/7) C^AATTG	В	+	100	75-100	10-25	25-50	75-100	37	No No
Mhl I	GDGCH^C	W	-	10-25	25-50	75-100	100	10-25	37	80°C
Mlu I	A^CGCGT	O	-	0-10	10-25	100	25-50	10-25	37	65°C
Mly113 I	GG^CGCC	В	-	100	25-50	10-25	10-25	50-75	37	65°C
Mnl I	CCTC(7/6)	G	+	75-100	100	25-50	25-50	75-100	37	65°C
Mox20 I	TGG^CCA	0	-	10-25	25-50	100	75-100	25-50	37	No
MroN I	G^CCGGC	В	-	100	50-75	10-25	0-10	10-25	37	80°C
MroX I	GAANN^NNTTC	W	-	50-75	50-75	50-75	100	25-50	37	65°C
Msp I	C^CGG	В	_	100	75-100	50-75	75-100	75-100	37	65°C
MspA1 I	CMG^CKG	Y	+	10-25	75-100	10-25	25-50	100	37	65°C
MspR9 I	CC^NGG	0	_	50-75	50-75	100	50-75	75-100	37	80°C
Mte I	G(5mC)G(5mC)^NG(5mC)G(5mC)	W	-	25-50	75-100	75-100	100	50-75	55	No
Nru I	TCG^CGA	W	-	0-10	10-25	75-100	100	10-25	37	80°C
PalA I	GG^CGCGCC	Y	-	25-50	10-25	0	0	100	37	65°C
Pce I	AGG^CCT	Y	-	75-100	75-100	50-75	25-50	100	50	80°C
Pci I	A^CATGT	0	-	50-75	75-100	100	75-100	50-75	37	65°C
PciS I	GCTCTTC(1/4)	В	-	100	50-75	0-10	0-10	75-100	37	65°C
Pcs I	(5mC)GNNNNN^NN(5mC)G	*	-	50-75	25-50	0	10-25	50-75	37	65°C
Pct I	GAATGC(1/-1)	О	-	25-50	50-75	100	75-100	10-25	37	65°C
Pkr I	G(5mC)N^G(5mC)	Y	-	50-75	75-100	10-25	25-50	100	37	65°C
Ple19 I	CGAT^CG	Y	-	75-100	75-100	25-50	25-50	100	37	65°C
Pps I	GAGTC(4/5)	Y	+	50-75	10-25	0-10	25-50	100	37	65°C
Psi I	TTA^TAA	В	-	100	25-50	10-25	25-50	75-100	37	65°C
Psp124B I	GAGCT^C	G	-	75-100	100	10-25	0-10	75-100	37	80°C
Psp6I	^CCWGG	В	-	100	50-75	10-25	25-50	75-100	55	80°C
PspC I	CAC^GTG	В	+	100	50-75	0	0	50-75	37	65°C
PspE I	G^GTNACC	В	-	100	50-75	25-50	50-75	50-75	37	65°C
PspL I	C^GTACG	Y	+	75-100	75-100	25-50	10-25	100	37	65°C
PspN4 I	GGN^NCC	Y	-	10-25	10-25	10-25	25-50	100	37	65°C
PspOM I	G^GGCCC	Y	-	75-100	10-25	0-10	0-10	100	37	65°C
PspPP I	RG^GWCCY	Y	+	50-75	25-50	10-25	10-25	100	37	65°C
PspX I	VC^TCGAGB	Y	+	50-75	50-75	25-50	75-100	100	37	80°C
Psr I	(7/12)GAAC(N) ₆ TAC(12/7)	Y	+	10-25	10-25	0	0-10	100	30	65°C
Pst I	CTGCA^G	О	+	10-25	25-50	100	25-50	25-50	37	80°C

^{* -} supplied with its own unique reaction buffer that is different from the five standard SE-Buffers.

Engumo	Descention seguence	SE	BSA			% from n			Optimum	Inactivati
Enzyme	Recognition sequence	Buffer	BSA	В	G	0	W	Y	t,0C	on,20min
PstN I	CAGNNN^CTG	Y	-	75-100	50-75	10-25	25-50	100	37	65°C
Pvu II	CAG^CTG	G	+	25-50	100	25-50	25-50	25-50	37	80°C
Rga I	GCGAT^CGC	Y	-	75-100	50-75	10-25	25-50	100	55	80°C
Rig I	GGCCGG^CC	*	+	75-100	50-75	0-10	10-25	50-75	37	65°C
Rsa I	GT^AC	В	-	100	50-75	0-10	50-75	75-100	37	80°C
RsaN I	G^TAC	В	-	100	75-100	50-75	50-75	75-100	37	80°C
Rsr2 I	CG^GWCCG	Y	+	50-75	75-100	0-10	10-25	100	37	65°C
Sal I	G^TCGAC	О	-	0-10	10-25	100	25-50	0-10	37	65°C
Sbf I	CCTGCA^GG	Y	-	75-100	50-75	0-10	0-10	100	37	80°C
Set I	ASST^	Y	-	25-50	25-50	75-100	75-100	100	55	80°C
SfaN I	GCATC(5/9)	О	-	10-25	25-50	100	75-100	0-10	37	80°C
Sfi I	GGCCNNNN^NGGCC	G	+	75-100	100	25-50	25-50	25-50	50	65°C
Sfr274 I	C^TCGAG	В	-	100	75-100	50-75	50-75	75-100	50	65°C
Sfr303 I	CCGC^GG	В	-	100	50-75	10-25	10-25	75-100	37	65°C
Sma I	CCC^GGG	Y	-	0-10	0-10	0-10	0-10	100	25	65°C
Smi I	ATTT^AAAT	О	+	25-50	25-50	100	75-100	25-50	37	65°C
SmiM I	CAYNN^NNRTG	W	-	10-25	10-25	75-100	100	10-25	37	65°C
Sph I	GCATG^C	G	+	25-50	100	75-100	75-100	50-75	37	65°C
Sse9 I	^AATT	В	+	100	75-100	50-75	50-75	75-100	55	65°C
Ssp I	AAT^ATT	K	+	75-100	50-75	25-50	50-75	75-100	37	65°C
SspM I	C^TAG	Y	-	50-75	25-50	10-25	50-75	100	55	No
Taq I	T^CGA	Y	+	50-75	75-100	75-100	50-75	100	65	80°C
Tru9 I	T^TAA	W	-	75-100	25-50	25-50	100	50-75	65	80°C
TseF I	^GTSAC	В	-	100	50-75	0-10	25-50	50-75	65	No
Tth111 I	GACN^NNGTC	Y	-	75-100	50-75	10-25	10-25	100	65	80°C
Vne I	G^TGCAC	О	-	10-25	25-50	100	25-50	25-50	37	65°C
Vsp I	AT^TAAT	W		0-10	10-25	50-75	100	25-50	37	65°C
Xba I	T^CTAGA	О	+	75-100	75-100	100	50-75	75-100	37	65°C
Xma I	C^CCGGG	Y	-	75-100	50-75	0	0-10	100	37	65°C
Zra I	GAC^GTC	В	-	100	50-75	25-50	25-50	75-100	37	80°C
Zrm I	AGT^ACT	Y	+	50-75	25-50	0-10	0-10	100	37	65°C
Zsp2 I	ATGCA^T	В	+	100	50-75	25-50	25-50	25-50	37	65°C
N·Bst9 I	GAGTC(4/-)	*	-	10-25	75-100	100	100	50-75	55	80°C
	, ,									

^{* -} supplied with its own unique reaction buffer that is different from the five standard SE-Buffers.

Isoschizomers

Enzyme AanI	SE Enzyme PsiI	Enzyme AsuHPI	SE Enzyme AsuHPI	Enzyme BseBI	SE Enzyme AjnI^	Enzyme BspTNI	SE Enzyme Bso31I	Enzyme BstX2I	SE Enzyme BstX2I
AasI	DseDI	AsuNHI	AsuNHI	BseBI	Bst2UI	BspTNI	Bsa29I	BstYI	BstX2I
AatI	PceI	71341111	BmtI^	DSCDI	Psp6I^	BsrI	Bse1I	BstZI	BseX3I
AatII	AatII	AvaI	Ama87I	BseCI	Bsa29I	BsrBI	AccBSI	BstZ17I	BssNAI
AbsI	AbsI	AvaII	Bme18I	BseDI	BssECI	BsrDI	Bse3DI	BsuI	BsuI
AccI	FblI	AvaIII	Zsp2I^	Bse3DI	Bse3DI	BsrFI	Bse118I	Bsu15I	Bsa29I
AccII	BstFNI	AviII	Acc16I	BseGI	BstF5I	BsrGI	BstAUI	Bsu36I	Bse21I
AccIII	Bsp13I	AvrII	AspA2I	BseGI	FokI^	BsrSI	Bse1I	BsuRI	BsuRI
Acc16I	Acc16I	AxyI	Bse21I	BseJI	Bse8I	BssAI	Bse118I		HaeIII
Acc36I	Acc36I	BalI	Mox20I	BseLI	Bsc4I	BssECI	BssECI	BsuTUI	Bsa29I
Acc65I	Acc65I	BamHI	BamHI	BseMI	Bse3DI	BssHI	Sfr274I	BtgI	BstDSI
	KpnI^	BanI	AccB1I	BseNI	Bse1I	BssHII	BsePI	BtrI	BtrI
AccB1I	AccB1I	BanII	FriOI	BsePI	BsePI	BssKI	MspR9I^	BveI	Acc36I
AccB7I	AccB7I	BanIII	Bsa29I	BseSI	BstSLI	D 3144	BstSCI	Cac8I	BstC8I
AccBSI	AccBSI	BarI	BarI	BseXI	BstV1I	BssNAI	BssNAI	Cail	PstNI
AciI AclI	BspACI AclI	BbeI	EgeI^ Mly113I^^	BseX3I BseYI	BseX3I GsaI	BssSI BssT1I	Bst2BI BssT1I	CauII CciI	AsuC2I CciI
AclWI	AclWI	BbrPI		Bsh1236I	BstFNI	BSS111	ErhI	CciNI	CciNI
Acol	Acol	BbsI	PspCI BstV2I	Bsh1285I	BstMCI	Bst6I	Bst6I	CellI	Bsp1720I
AcsI	AcsI	BbuI	SphI	BshFI	BsuRI	Bst98I	BstAFI	CfoI	AspLEI
Acul	AcuI	BbvI	BstV1I	DSIII'I	HaeIII	Bst1107I	BssNAI	Cioi	BstHHI
Acul	PspCI	BbvII	BstV2I	BshNI	AccB1I	BstACI	BstACI		HspAI^
Acyl	BstACI	Bbv12I	Bbv12I	BshTI	AsiGI	BstAFI	BstAFI	CfrI	Acol
Adel	DraIII	Bell	Ksp22I	BsiI	Bst2BI	BstAPI	BstAPI	Cfr9I	XmaI
AfaI	RsaI	BciVI	BsuI	BsiEI	BstMCI	BstAUI	BstAUI	0.1.71	SmaI^
AfeI	AfeI	BenI	AsuC2I	BsiHKAI	Bbv12I	BstBI	Bpu14I	Cfr10I	Bse118I
AflII	BstAFI	BcuI	AhlI	BsiHKCI	Ama87I	Bst2BI	Bst2BI	Cfr13I	AspS9I
AgeI	AsiGI	BfiI	BmuI	BsiSI	HpaII	BstBAI	BstBAI	Cfr42I	Sfr303I
AgsI	AgsI	BfmI	BstSFI		MspI	Bst4CI	Bst4CI	ClaI	Bsa29I
AhaIII	DraI	BfrI	BstAFI	BsiWI	PspLI	BstC8I	BstC8I	CpoI	Rsr2I
AhdI	DriI	BfrBI	Zsp2I^	BsiYI	Bsc4I	BstDEI	BstDEI	CspI	Rsr2I
AhlI	AhlI	BfuI	BsuI	BslI	Bsc4I	BstDSI	BstDSI	Csp6I	RsaI^
AjnI	AjnI	BfuAI	Acc36I	BslFI	BslFI	BstEII	PspEI	Csp45I	Bpu14I
	Bst2UI^	BfuCI	BstMBI	BsmFI	BslFI^	BstENI	BstENI	CspAI	AsiGI
	Psp6I		BstKTI^	BsmI	PctI	BstF5I	BstF5I	CviAII	FaeI^^
AluI	AluI		Kzo9I	BsmAI	BstMAI		FokI^		FatI^
	AluBI	BglI	BglI	Bso31I	Bso31I	BstFNI	BstFNI	DdeI	BstDEI
AluBI	AluBI	BglII	BglII	BsoBI	Ama87I	BstH2I	BstH2I	DpnI	MalI
AlwI	AclWI	BinI	AclWI	BsoMAI	BstMAI	BstHHI	BstHHI	DpnII	BstMBI
Alw21I	Bbv12I	BisI	BisI	Bsp13I	Bsp13I		AspLEI		Kzo9I
Alw26I	BstMAI	BlnI	AspA2I	Bsp19I	Bsp19I	D AKTE	HspAI^	D. I	BstKTI^
Alw44I	VneI	BlpI	Bsp1720I	Bsp68I	NruI	BstKTI	BstKTI	DraI	DraI
AlwNI	PstNI	BlsI	BlsI	Bsp106I	Bsa29I		BstMBI^	DraIII	DraIII DseDI
Ama87I Aor51HI	Ama87I AfeI	Bme18I Bme1390I	Bme18I MspR9I	Bsp119I Bsp120I	Bpu14I PspOMI	BstMBI	Kzo9I^ BstKTI^	DrdI DriI	DriI
AoxI	AoxI	Bille13901	BstSCI^	DSP1201	ApaI^	DSUVIDI	BstMBI	DsaI	BstDSI
ApaI	ApaI	BmgBI	BtrI	Bsp143I	BstMBI		Kzo9I	Dsal	DseDI
Араг	PspOMI^	BmtI	BmtI	Dsp1431	Kzo9I	BstMCI	BstMCI	EaeI	AcoI
ApaBI	BstAPI^	Dinti	AsuNHI^		BstKTI^	BstMWI	BstMWI	EagI	BseX3I
ApaLI	VneI	BmyI	MhlI	Bsp143II	BstH2I	BstNI	AjnI^	Eam1104I	Bst6I
ApoI	AcsI	BoxI	BstPAI	Bsp1286I	MhlI	251	Bst2UI	Eam1105I	DriI
ArsI	ArsI	BpiI	BstV2I	Bsp1407I	BstAUI		Psp6I^	EarI	Bst6I
AscI	PalAI	BpmI	BpmI	Bsp1720I	Bsp1720I	BstNSI	BstNSI	Ecl136II	EcoICRI
AseI	VspI	Bpu10I	Bpu10I	BspACI	BspACI	BstOI	AjnI^		Psp124BI^
AsiGI	AsiGI	Bpu14I	Bpu14I	BspANI	BsuRI		Bst2UI	EclHKI	DriI
AsiSI	AsiSI	Bpu1102I	Bsp1720I		HaeIII		Psp6I^	EclXI	BseX3I
AspI	Tth111I	BpuAI	BstV2I	BspCI	Ple19I	BstPI	PspEI	Eco24I	FriOI
Asp700I	MroXI	BsaI	Bso31I	BspDI	Bsa29I	BstPAI	BstPAI	Eco31I	Bso31I
Asp718I	Acc65I	Bsa29I	Bsa29I	BspEI	Bsp13I	BstSCI	BstSCI	Eco32I	EcoRV
	KpnI^	BsaAI	BstBAI	BspFNI	BspFNI		MspR9I^	Eco47I	Bme18I
AspA2I	AspA2I	BsaBI	Bse8I	BspHI	CciI	BstSFI	BstSFI	Eco47III	AfeI
AspEI	DriI	BsaHI	BstACI	BspLI	PspN4I	BstSLI	BstSLI	Eco52I	BseX3I
AspHI	Bbv12I	BsaJI	BssECI	BspLU11I	PciI	BstSNI	BstSNI	Eco57I	AcuI
AspLEI	AspLEI	BsaMI	PctI	BspMI	Acc36I	BstUI	BstFNI	Eco72I	PspCI
	BstHHI	Bsc4I	Bsc4I	BspMII	Bsp13I	Bst2UI	AjnI^	Eco81I	Bse21I
	HspAI^	Bse1I	Bse1I	BspMAI	PstI		Bst2UI	Eco88I	Ama87I
AspS9I	AspS9I	Bse8I	Bse8I	BspPI	AclWI		Psp6I^	Eco91I	PspEI
AsuI	AspS9I	Bse21I	Bse21I	BspTI	BstAFI	BstV1I	BstV1I	Eco105I	BstSNI
AsuII AsuC2I	Bpu14I	Bse118I	Bse118I	BspT104I	Bpu14I	BstV2I	BstV2I	Eco130I	BssT1I
	AsuC2I	BseAI	Bsp13I	BspT107I	AccB1I	BstXI	BstXI	III	ErhI

Isoschizomers

Enzyme	SE Enzyme	Enzyme	SE Enzyme	Enzyme	SE Enzyme	Enzyme	SE Enzyme	Enzyme	SE Enzyme
Eco147I	PceI	HincII	HindII	MvaI	AjnI^	Psp124BI	EcoICRI^	SnaI	BssNAI
EcoICRI	EcoICRI	HindII	HindII		Bst2UI		Psp124BI	SnaBI	BstSNI
	Psp124BI^	HindIII	HindIII		Psp6I^	PspCI	PspCI	SpaHI	SphI
EcoNI	BstENI	HinfI	HinfI	Mva1269I	PctI	PspEI	PspEI	SpeI	AhlI
EcoO65I	PspEI	HpaI	HpaI	MvnI	BstFNI	PspGI	AjnI	SphI	SphI
EcoRI	EcoRI	HpaII	HpaII	MwoI	BstMWI		Bst2UI^	G 17	
EcoRII	AjnI	** 1 *	MspI	NaeI	MroNI^		Psp6I	SplI	PspLI
	Bst2UI^	HphI	AsuHPI	NarI	EgeI^	PspLI	PspLI	Sse9I	Sse9I
E DV	Psp6I	HpyCH4III	Bst4CI		Mly113I	PspN4I	PspN4I	Sse8387I	SbfI
EcoRV	EcoRV	HpyF10VI	BstMWI	NI-II	A C2I	PspOMI	ApaI^	SseBI SsiI	PceI
EcoT14I	BssT1I	HpySE526I Hsp92I	HpySE526I BstACI	NciI NcoI	AsuC2I Bsp19I	PspPI	PspOMI AspS9I		BspACI
	ErhI	Hsp92II	FatI^	NdeI	FauNDI	PspPI	PspPPI	SspI SspBI	SspI BstAUI
EcoT22I	Zsp2I	HspAI	AspLEI^	NdeII	BstMBI	PspXI	PspXI	SspMI	SspMI
EcoT38I	FriOI	Пърд	BstHHI^	INGCII	Kzo9I	PsrI	PsrI	SstI	EcoICRI^
EgeI	EgeI		HspAI		BstKTI^	PstI	PstI	5811	Psp124BI
Lgci	Mly113I^	ItaI	Fsp4HI	NgoMIV	MroNI	PsuI	BstX2I	StuI	PceI
EheI	EgeI	KasI	EgeI^	NheI	AsuNHI	PsyI	Tth111I	StyI	BssT1I
Lifei	Mly113I^	IXUSI	Mly113I^^	TVIICI	BmtI^	PvuI	Ple19I	Sty1	ErhI
ErhI	BssT1I	KpnI	KpnI	NlaIII	FaeI	PvuII	PvuII	StyD4I	BstSCI
Lim	ErhI	Itpiii	Acc65I^	TVIGITI	FatI^	RgaI	RgaI	Sty D II	MspR9I^
EspI	Bsp1720I	Kpn2I	Bsp13I	NlaIV	PspN4I	RigI	RigI	SunI	PspLI
FaeI	FaeI	KroI	KroI	NotI	CciNI	RsaI	RsaI	SwaI	SmiI
FaiI	FaiI	KspI	Sfr303I	NruI	NruI	I	RsaNI^	TaaI	Bst4CI
FalI	Fall	Ksp22I	Ksp22I	NsbI	Acc16I	RsaNI	RsaNI	Taq I	TagI
FatI	FaeI^	Ksp632I	Bst6I	NsiI	Zsp2I	RsrII	Rsr2I	TasI	Sse9I
	FatI	KspAI	HpaI	NspI	BstNSI	Rsr2I	Rsr2I	TelI	Tth111I
FauI	FauI	Kzo9I	BstMBI	NspIII	Ama87I	SacI	EcoICRI^	TliI	Sfr274I
FauNDI	FauNDI		Kzo9I	NspV	Bpu14I		Psp124BI	Tru1I	Tru9I
FbaI	Ksp22I		BstKTI^	NspBII	MspA1I	SacII	Sfr303I	Tru9I	Tru9I
FblI	FbÎI	Lmn I	Lmn I	PaeI	SphI	SalI	SalI	TseFI	TseFI
FinI	BslFI	LweI	SfaNI	PaeR7I	Sfr274I	SapI	PciSI	Tsp45I	TseFI
FnuDII	BspFNI	MabI	MabI	PalI	BsuRI	SatI	Fsp4HI	Tsp4CI	Bst4CI
	BstFNI	Mae I	SspMI		HaeIII	SauI	Bse21I	Tsp509I	Sse9I
Fnu4HI	Fsp4HI	MaeII	HpySE526I	PauI	BsePI	Sau96I	AspS9I	TspEI	Sse9I
FokI	FokI	MalI	MalI	PceI	PceI	Sau3AI	BstMBI	Tth111I	Tth111I
	BstF5I^	MamI	Bse8I	PciI	PciI		Kzo9I	Van91I	AccB7I
FriOI	FriOI	MbiI	AccBSI	PciSI	PciSI		BstKTI^	VneI	VneI
FseI	RigI	MboI	BstMBI	PcsI	PcsI	SbfI	SbfI	VpaK11BI	Bme18I
FspI	Acc16I		Kzo9I	PctI	PctI	ScaI	ZrmI	VspI	VspI
Fsp4HI	Fsp4HI		BstKTI^	PdiI	MroNI^	SchI	PpsI^	XagI	BstENI
FunI	AfeI	MboII	MboII	PdmI	MroXI	ScrFI	BstSCI^	XapI	AcsI
FunII	EcoRI	McrI	BstMCI	Pfl23II	PspLI	0.1.7	MspR9I	XbaI	XbaI
Gla I	Gla I	MfeI	MfeI	PflBI	AccB7I	SdaI	SbfI	XceI	BstNSI
GluI	GluI	MfII	BstX2I	PflFI	Tth111I	SduI	MhlI	XhoI	Sfr274I
GsaI	GsaI	MhlI	MhlI	PflMI	AccB7I	SecI	BssECI	XhoII	BstX2I
GsuI	BpmI	MlsI	Msp20I	PhoI	BsuRI	SetI	SetI	XmaI	SmaI^
HaeIII HaeIII	BstH2I BsuRI	MluI MluNI	MluI Msp20I	PinAI	HaeIII AsiGI	SexAI	MabI	XmaIII	XmaI BseX3I
Haem	HaeIII	MlyI	PpsI^	PkrI	PkrI	SfaNI	SfaNI	XmaCI	SmaI^
HapII	HpaII	Mly113I	EgeI^	PleI	PpsI	SfcI	BstSFI	Amacı	XmaI
парш	MspI	1V11y 1 1 3 1	Mly113I	Ple19I	Ple19I	SfeI	BstSFI	XmaJI	AspA2I
HgaI	HgaI	MnlI	MnlI	PmaCI	PspCI	SfiI	SfiI	XmiI	FblI
HgiAI	Bbv12I	Mox20I	Mox20I	PmlI	PspCI	SfoI	EgeI	XmnI	MroXI
HgiCI	AccB1I	Mph1103I	Zsp2I	PpsI	PpsI	5101	Mly113I^	ZhoI	Bsa29I
HgiJII	FriOI	MroI	Bsp13I	PpuMI	PspPPI	Sfr274I	Sfr274I	ZraI	AatII^
HhaI	AspLEI	MroNI	MroNI	PpuXI	PspPPI	Sfr303I	Sfr303I		ZraI
	BstHHI	MroXI	MroXI	PshAI	BstPAI	SfuI	Bpu14I	ZrmI	ZrmI
	HspAI^	MscI	Msp20I	PshBI	VspI	SgfI	AsiSI	Zsp2I	Zsp2I
Hin1I	BstACI	MseI	Tru9I	PsiI	PsiI	<i>3</i> -	RgaI	1	1
Hin6I	AspLEI^	MsII	SmiMI	Psp5II	PspPPI	SgrBI	Sfr303I	i	
-	BstHHI^	MspI	HpaII	Psp6I	AjnI	SinI	Bme18I	i	
	HspAI		MspI		Bst2UI^	SlaI	Sfr274I	i	
HinP1I	AspLEI^	MspA1I	MspA1I		Psp6I	SmaI	SmaI	i	
	BstHHI^	MspCI	BstAFI	Psp1406I	AclI		XmaI^		
	HspAI	MspR9I	BstSCI^	PspAI	SmaI^	SmiI	SmiI		
		1	MspR9I		XmaI	SmiMI	SmiMI		
		MstI	Acc16I			SmuI	FauI		
		II 3.6. T	MteI						
		MteI						1	
		Mtel MunI	MfeI						

Alphabetized List of SE Recognition Sequences

AA^CGTT	Acl I	C^CGG	Hpa II	GACNN^NNGTC	BstPA I
A^AGCTT	Hind III	C^CGG	Msp I	GACNNN^NNGTC	Dri I
(8/13)AAGN ₅ CTT(13/8)	Fal I	CC^NGG	MspR9 I	GACNNNN^NNGTC	DseD I
AAT^ATT	Ssp I	^CCNGG	BstSC I	(8/13)GAC(N) ₆ TTYG(11/6)	Ars I
^AATT	Sse9 I	C^CNNGG	BssEC I	(5/4)GACTC	Pps I
A^CATGT	Pci I	CCNNNNN^NNGG	Bsc4 I	(5/1)GAGAC	BstMA I
A^CCGGT	AsiG I	C^CRYGG	BstDS I	(5/1)GAGACC	Bso31 I
ACCTGC(4/8)	Acc36 I	CC^SGG	AsuC2 I	GAG^CGG	AccBS I
A^CCWGGT	Mab I	C^CTAGG	AspA2 I	GAG^CTC	EcoICR I
A^CGCGT	Mlu I	CCTC(7/6)	MnlI	GAGCT^C	Psp124B I
A^CGT	HpySE526I	CC^TCGAGG	Abs I	(6/7)GAGG	Mnl I
ACN^GT	Bst4C I	CCTGCA^GG	Sbf I	GAGTC(4/5)	Pps I
A^CTAGT	Ahl I	CC^TNAGC	Bpu10 I	G^ANTC	Hinf I
ACTGG(1/-1)	Bse1 I	CC^TNAGG	Bse21 I	GAT^ATC	EcoR V
ACTGGG(5/4)	Bmu I	CCTNN^NNNAGG	BstEN I	G(mA)^TC	Mal I
A^GATCT	Bgl II	^CCWGG	Psp6 I	^GATC	BstMB I
AGC^GCT	Afe I	CC^WGG	Bst2U I	^GATC	Kzo9 I
AG^CT	Alu I	C^CWWGG	BssT1 I	GAT^C	BstKTI
AG^CT	AluB I	C^CWWGG	Erh I	(5/4)GATCC	AclW I
AGG^CCT	Pce I	CGAT^CG	Ple19 I	(9/5)GATGC	SfaN I
AGG^CGG	AccBS I	CG^CG	BspFN I	GATNN^NNATC	Bse8 I
AGT^ACT	Zrm I	CG^CG	BstFN I	GCAATG(2/0)	Bse3D I
ASST^	Set I	C^GGCCG	BseX3 I	GCAGC(8/12)	BstV1 I
AT^CGAT	Bsa29 I	CG^GWCCG	Rsr2 I	(8/4)GCAGGT	Acc36 I
ATGCA^T	Zsp2 I	(5mC)GNNNNN^NN(5mC)G	Pcs I	GCANNNN^NTGC	BstAP I
AT^TAAT	Vsp I	CGRY^CG	BstMC I	GCATC(5/9)	SfaN I
ATTT^AAAT	Smi I	C^GTACG	PspL I	GCATG^C	Sph I
C^AATTG	Mfe I	CMG^CKG	MspA I	(-1/1)GCATTC	Pct I
C^ACGAG	Bst2B I	C^TAG	SspM I	G^CCGGC	MroN I
CAC^GTC	Btr I	(14/16)CTCCAG	Bpm I	GCCNNNN^NGGC	Bgl I
CAC^GTG		C^TCGAG	Sfr274 I	GCGAT^CGC	AsiS I
	PspC I				
CACNNN^GTG CAG^CTG	Dra III Pvu II	C^TCGTG	Bst2B I Bst6 I	GCGAT^CGC G^CGC	Rga I
		CTCTTC(1/4)			HspA I
CAGNNN^CTG CA^TATG	PstN I FauND I	CTGAAG(16/14) CTGCA^G	Acu I Pst I	GCG^C GCG^C	AspLE I BstHH I
(13/9)CATCC	Fok I	CTGGAG(16/14)	Bpm I	G^CGCGC	BseP I
(0/2)CATCC	BstF5 I	C^TNAG	BstDE I	G(5mC)G(5mC)^NG(5mC)G(5mC)	Mte I
CATG^	Fae I	C^TRYAG	BstSF I	(-1/-3)GCGG	BspAC I
^CATG	Fat I	C^TTAAG	BstAF I	GC^GGCCGC	CciN I
(0/2)CATTGC	Bse3D I	(14/16)CTTCAG	Acu I	(6/4)GCGGG	Fau I
CAYNN^NNRTG	SmiM I	C^YCGRG	Ama87 I	(10/5)GCGTC	Hga I
(-1/1)CCAGT	Bsel I	(7/12)GAAC(N) ₆ TAC(12/7)	Psr I	GC^NGC	Fsp4H I
CCANNNN'NTGG	AccB7 I	GAAGAC(2/6)	BstV2 I	G^C(5mC)GGC	Kro I
CCANNNNN^NTGG	BstX I	(4/1)GAAGAG	Bst6 I	G(5mC)^NGC	Bis I
C^CATGG	Bsp19 I	(4/1)GAAGAGC	PciS I	$G(5mC)N^{G}(5mC)$	Pkr I
CCCAG^C	Gsa I	(7/12)GAAG(N) ₆ TAC(12/7)	Bar I	G(5mC)^NG(5mC)	GluI
(4/5)CCCAGT	Bmu I	GAANN^NNTTC	MroX I	GCN^NGC	BstC8 I
CCCGC(4/6)	Fau I	GAATGC(1/-1)	Pct I	GCNNNNN^NNGC	BstMW I
CCC^GGG	Sma I	G^AATTC	EcoR I	G^CTAGC	AsuNH I
C^CCGGG	Xma I	GACGC(5/10)	Hga I	GCTAG^C	Bmt I
CCGC(-3/-1)	BspAC I	GACGT^C	Aat II	GCTCCN^	Lmn
CCG^CCT	AccBS I	GAC^GTC	Zra I	GCTCTTC(1/4)	PciS I
CCGC^GG	Sfr303 I	GAC^GTG	Btr I	(12/8)GCTGC	BstV1 I
		GACN^NNGTC	Tth111 I		

Alphabetized List of SE Recognition Sequences

G^CTGGG	Gsa I	G^GYRCC	AccB1 I	R^GATCY	BstX2 I
GC^TNAGC	Bst1720 I	GKGCM^C	BstSL I	RGCGC^Y	BstH2 I
GC^TNAGG	Bpu10 I	GR^CGYC	BstAC I	RG^GWCCY	PspPP I
GDGCH^C	Mhl I	GRGCY^C	FriO I	TAC^GTA	BstSN I
GGATC(4/5)	AclW I	GT^AC	Rsa I	(7/8)TCACC	AsuHP I
G^GATCC	BamH I	G^TAC	RsaN I	T^CATGA	Cci I
GGATG(2/0)	BstF5 I	(7/12)GTA(N) ₆ CTTC(12/7)	Bar I	T^CCGGA	Bsp13 I
GGATG(9/13)	Fok I	(7/12)GTA(N) ₆ GTTC(12/7)	Psr I	T^CGA	Taq I
GG^CC	BsuR I	GTA^TAC	BssNA I	TCG^CGA	Nru I
GG^CC	Hae III	GTATCC(6/5)	Bsu I	T^CTAGA	Xba I
GGCCGG^CC	Rig I	(14/10)GTCCC	BslF I	T^GATCA	Ksp22 I
GGCCNNNN^NGGCC	Sfi I	G^TCGAC	Sal I	TGC^GCA	Acc16 I
GG^CGCC	Mly113 I	GTCTC(1/5)	BstMA I	TGG^CCA	Mox20 I
GGC^GCC	Ege I	(6/2)GTCTTC	BstV2 I	T^GTACA	BstAU I
GG^CGCCC	PalA I	G^TGCAC	Vne I	T^TAA	Tru9 I
GGGAC(10/14)	BslF I	GT^MKAC	Fbl I	TTA^TAA	Psi I
G^GGCCC	PspOM I	^GTSAC	TseF I	TT^CGAA	Bpu14 I
GGGCC^C	Apa I	GTT^AAC	Hpa I	TTS^AA	Ags I
G^GNCC	AspS9 I	GTY^RAC	Hind II	TTT^AAA	Dra I
GGN^NCC	PspN4 I	GWGCW^C	Bbv12 I	VC^TCGAGB	PspX I
G^GTACC	Acc65 I	Pu(5mC)^GPy	Gla I	YAC^GTR	BstBA I
GGTAC^C	Kpn I	^PuG(5mC)Py	Aox I	YA^TR	Fai I
GGTCTC(1/5)	Bso31 I	PuPyN^PuPy	Bls I	Y^GGCCR	Aco I
GGTGA(8/7)	AsuHP I	R^AATTY	Acs I		
G^GTNACC	PspE I	RCATG^Y	BstNS I		
G^GWCC	Bme18 I	R^CCGGY	Bse118 I		

 $\begin{array}{ccccccc} R = A \text{ or } G & W = A \text{ or } T & S = G \text{ or } C \\ K = G \text{ or } T & M = A \text{ or } C & Y = T \text{ or } C \\ D = A \text{ or } G \text{ or } T & H = A \text{ or } C \text{ or } T & N = A \text{ or } C \text{ or } G \text{ or } T \end{array}$